
CPS221 Lecture - Introduction to Database Systems

Last revised July 20, 2011
Objectives:
1. To understand the difference between "data" and "information"
2. To be familiar with key issues such as privacy, integrity, security, and

preservation of information.
3. To introduce the notion of persistence and various ways of achieving it
4. To introduce key DBMS concepts
5. To understand that a DBMS can help address issues like privacy, etc.

Materials:
1. Example from Kroenke/Hatch pp 15-18 to read; projectables of figures 1-5, 1-6,

1-7 and 1-8
2. db2 version of database used for SQL use lab to demo
3. db2 security database

I. Preliminary Notions

A. The terms “data” and “information” are familiar, but actually mean two
different things. The difference is illustrated by the following example

1. READ example from Kroenke/Hatch pp. 15-18
PROJECT Figures 1-5, 1-6, 1-7, 1-8 while reading.

2. In this unit of the course, we will be talking about database
management systems - that is, systems for recording and providing
access to data. But it is important that we set this discussion in the
context of the purpose of recording data.

a) One purpose is, of course, to facilitate some process.

(1) For example, a database at Gordon keeps track of current
enrollments in courses and academic history to facilitate the day
to day operations of the college and to furnish transcript
information alumni will need. (You would be rather unhappy if
you applied to a job or graduate school and the college couldn't
furnish any record of the courses you completed here!)

(2) Again, a database at an ecommerce site like Amazon keeps track
of orders to facilitate shipping what you have ordered and billing
your credit card - as well as making recommendations of items
you might like the next time you visit the site.

1

b) But the raw data can also be processed in various ways to provide
information needed for operations.

(1) For example, data in the registration database can be used to
generate information as to what individuals are close to
graduation based on total credits earned, or what individuals
have exhibited stellar academic performance (based on a gpa
computed from academic history information) and thus merit
graduation with honors, etc.

(2) An ecommerce site may use information about what items are
often purchased together to facilitate recommendations along the
lines of “you might also like ...”

c) Moreover, often the raw data will be processed in various ways to
provide information needed for decision-making.

(1) Course registration data can be processed to provide information
about under-enrolled courses or courses needing additional
sections.

(2) An ecommerce site may also use information about what items
are not selling well to facilitate decisions about what items to
feature or stop carrying.

B. When dealing with data about individuals, a number of very important
issues arise.

1. Issues pertaining to data privacy.

a) In essence, privacy is the right of the individual to control who may
access information about them. In the US (and indeed in many
parts of the world) privacy laws regulate access to personally
identifiable information including medical, educational, and financial
records.

b) Of course, privacy cannot be absolute.

(1) Our tax system, for example, requires the disclosure of cerain
financial information to agencies like the IRS. However, there
are regulations governing disclosure of such information.

(2) In the US, certain information about us is considered to be part
of the public record, and hence available to anyone. Some
examples of things in the public record include:

2

(a) Vital statistics such as birth and death information.

(b) Property ownership information

(c) Most records of court proceedings

(d) Information about elected officials and government
employees, including official correspondence, salary
information, etc.

2. Issues pertaining to data integrity.

a) Integrity is concerned with the accuracy of data.

For example, with regard to your grades, privacy is concerned with
who may have access to them, while integrity is concerned with
being sure they are accurately recorded

b) Data integrity begins when data is first stored in a system. But it
goes beyond that, since data is subject to corruption

c) A classic example concerns the corruption of data that can result
from concurrency if appropriate measures are not taken.

Example:

Suppose a husband and wife share a checking account. Suppose
that, at precisely the same time, one partner is depositing $200 to
their checking account, while the other is withdrawing $100.
Suppose, further, that the initial balance in the checking account is
$1000 - so that the correct balance, after both operations, should be
$1100.

If the software that accesses the account does not adequately deal
with concurrency, either of the following scenarios is possible.

(1) Deposit transaction reads current balance $1000
Deposit transaction adds $200 to yield $1200
Withdrawal transaction reads current balance $1000
Withdrawal transaction subtracts $1000 yielding $900
Deposit transaction writes updated balance $1200
Withrdrawal transaction writes updated balance $900

Final balance is $200 too low

3

(2) Deposit transaction reads current balance $1000
Deposit transaction adds $200 to yield $1200
Withdrawal transaction reads current balance $1000
Withdrawal transaction subtracts $1000 yielding $900
Withrdrawal transaction writes updated balance $900 Deposit
transaction writes updated balance $1200

Final balance is $100 to high

3. Issues pertaining to data security.

Security is concerned with protecting data against

a) Access by unauthorized individuals

b) Modification by unauthorized individuals.

Clearly, data privacy is not possible if unauthorized individuals can
access data which should be private; and data integrity is not
possible if unauthorized individuals can change information.

4. Issues pertaining to data preservation.

a) There are many situations in which the loss of data can have dire
consequences. Consider, for example, what would happen if the
college lost the records of the courses you have taken, or your bank
lost the records of your bank account.

b) Many things can result in loss of data: fire, flood, explosion, theft, or
even simple media failure.

c) Of course, data preservation is not only concerned with protecting
data against total loss, but also against corruption once it has been
stored due to things like partial failure of media or system problems
happening during update.

C. The Notion of Data Persistence

1. Thus far, almost everything we have done has involved objects that
reside in main memory (RAM) on some computer. This means, of
course that those objects "live" only while the program is running, and
cease to exist when the program is terminated, either via normal exit
or as a result of a system crash, power failure, etc.

4

a) This is a consequence of the fact that the CPU can only directly
manipulate information that is stored in main memory. Information
stored elsewhere (e.g. on disk) must be brought into main memory
before it can be manipulated.

b) Note that access times for current main memory technologies is on
the order of 60-70 ns. Access time for data on disk is on the order
of 10 ms. Since 1 ms is 1 million ns, this is over a 100,000 to 1
ratio!

2. Obviously, for many applications this is not sufficient. We need some
way to make certain objects PERSISTENT - to preserve them between
runs of the program.
EXAMPLE:
In the registration database example used in a CPS122 lab and in the
RMI lab in this course - and which we will use again in a future lab -
there is no persistence mechanism - all courses start out empty when
we first run the program, and enroll/drop/grade operations are lost
when the program exits. Though we've used the program to illustrate
many interesting concepts, as it stands right now it's actually useless!

EXAMPLE:

Recall the Video Store project you did in CPS122. Which objects need
to be persistent?

ASK

3. Because this is so important, it turns out there are two broad ways of
meeting this need.

a) The approach taken by many familiar applications, utilizing a File
menu with New, Open, and Save options
However, this approach has very serious limitations.
ASK

(a) Data is saved only at certain times.

i) When the user explicitly uses the Save menu option.

ii) In some cases, automatically via some sort of auto-save
facility.

5

In either case, if the program crashes or the power is lost,
all work done since the last Save is lost. This may be
acceptable for applications like a word processor
(especially one with auto-save where the information loss
in the case of a crash may be relatively small), but is
obviously not acceptable for recording transactions in a
bank or an e-commerce system.

(b) It the stored database is large, then an “Open” or “Save”
operation can take a great deal of time.

b) Another approach is to make use of information that resides
primarily on disk, with a portion of the information temporarily
copied to main memory for access/update, and with changes made
to the in-memory copy immediately written back to disk, on a
transaction-by-transaction basis.

II. Fundamental Concepts of Database Management Systems

A. There are actually two broad approaches that can be taken to providing
persistence by storing information on disk: a file-processing approach and a
database management system approach. (The latter, of course, is the
subject of this unit of the course.)

1. Historically, these two approaches evolved successively.

a) Early computer applications were always developed using the file
processing approach, because that was the only approach known.

b) The DBMS approach was developed in the 1960's, and has come to
be used in a variety of application areas - many falling into the
broad category of "business data processing", but for other areas as
well.

2. The file-processing approach is characterized by a close relationship
between programs and data.

a) Each program is written to process a certain file or group of files
and must embody detailed knowledge about the structure of each
file it uses.

Example: A program written in a C-like language that accesses a file
of students might contain or include a declaration like this

6

struct Student
{

char[7] id;
char[15] last_name;
char[15] first_name;
char[4] major;

};

b) As a corollary, any change in the structure of the file will necessitate
a change in the program. In particular, if several programs access
the same file, then if the requirements for one change calling for
adding a field, then all the programs need to change.

Example: Suppose one of the programs needed this file to also
contain the student's birth date. Then a field would need to be
added to the declaration for struct Student, affecting all of the
programs (at least to the extent of calling for a recompilation).

c) To avoid this unintended coupling between unrelated programs, it is
common to design file-processing type systems so that each
application area “owns” its own files.

d) File-processing based systems, then, tend to be characterized by a
proliferation of application-specific files, each with its own format.
Certain data items are stored redunantly - i.e. in more than one
place in the database. This, however, creates new problems:

ASK CLASS

(1) Wasted storage (becoming less of a problem as storage costs go
down, but still a concern, especially when one thinks of backup
using a network.)

(2) Update problems: when an item of information has to be
changed, it may need to be changed in several different places in
the database. This means extra work each time an update has to
be done.

(3) Inconsistency problems: over time, it is possible that the database
may contain two different values for the same data item in two
different places, because some update operation did not catch all
of the places that need to be changed. This causes confusion.

7

Example: Gordon's first computerized registration system
maintained a separate student file for each academic term. Each
file contained various personal data on the student, the name of
his advisor, and a list of the courses he/she was enrolled in that
term. The file also contained space to record the grades for
each course taken, though of course these slots would not be
filled in until after the end of the term.

(a) As registration time for a new term approached, the
computer center would copy data from the current term's file
into a file for the new term, blanking out the list of courses
registered for but leaving all else intact.

(b) At some point in time, the registrar's office could have three
different files active:

i) The term just completed, awaiting the posting of grades
and printing of grade reports, plus the possibility of grade
changes by the professor.

ii) The current term.

iii) The upcoming term, since registration for a new term is
held about five weeks into the preceding term.

(c) Any change in basic student information would have to be
posted to ALL the active files. Sometimes, this would not be
done.

i) In one case, a student changed into the computer science
major in mid-term, and I was assigned as her advisor. This
was duly recorded in the current term's file; however, the
file for the new term had already been created, containing
her old advisor's name, and this was not changed.

ii) As a result, I got her grade report for one term, but the next
term the grade report was sent to her old advisor. We caught
this, and the file was updated; but not before the outdated
information had been propagated into yet another term's file.

iii) It took multiple terms before all the records agreed that I
was this student's advisor. In one case, she was sent back
from registration because my signature was on her card
and the computer said someone else was her advisor (a
year after she had changed majors)!

8

(4) Data isolation problems: it is not easy in such a system to pull
together a report containing all the information stored on one
particular entity, since it is scattered over many files, each with a
distinctive format.

3. In contrast, a database management system approach breaks the tight
coupling between application programs and data, by putting a software
layer in between:

 USERS

Application Programs

DBMS

Actual data (stored
in one or more files)

Application programs that need data do not get it directly from the
files where it is stored, but rather from the DBMS, which in turn gets it
from the file. Application programs are not allowed to access the data
directly.

B. In addition to the data itself, the database maintained by the DBMS also
contains META-DATA: data about the data.

This takes the form of a data dictionary, which contains at least two things
for each data item in the database:

1. A standard name for the data item which application programs use
when they want to access it - e.g.

student.id, student.last_name, student.first_name, student.major

which specifies where the data item is stored (what table it is in, and
what column in the table), so that the DBMS can locate it.

2. DEMO:

Open a terminal window to system db2 version of registration
database; widen it

9

db2 -t
connect to cps221 user bjork;
list tables;
describe table student;

C. A DBMS can facilitate addressing the key issues of privacy, security,
integrity and preservation that we looked at earlier.

1. The above demonstration showed only part of the meta-data for
student. In addition to the data type information, the meta-data may
include integrity constraints

Often, the values of certain items in a database are logically constrained
to only certain possibilities.

(1) Example: in the student table, the field id is declared to be the
primary key - which implies that no two rows can contain the
same value - and also declared to prohibit a null value

Demo:

select * from student;
insert into student values('7777777',
 'Gopher', 'Gertrude', 'ART');
insert into student values('1111111', 'Horse',
 'Horace', 'CPSC');

(2) Example: a grade field in a registration system may only contain
values like A, A-, B+ ... D-, F, I or W. Any other value (e.g. Z)
is meaningless. It is important for software that modifies such an
item to ensure that the new value obeys the appropriate
constraints.

(a) Under a file-processing approach, this is difficult since each
program that accesses the data must know and apply the
constraints. The problem becomes especially severe if a new
constraint must be added or an existing one altered: every
program accessing the data must be modified to the new
rules.

(b) Under a DBMS approach, the data dictionary entry for the
item can contain constraint information which the DBMS
software can check whenever the item is changed, since all
changes to the item are done through the DBMS.

10

DEMO: insert into course_taken
 values('1111111', 'BCM', '103',
 '2009FA', 4, 'Z');

(3) Good use of integrity constraints facilitates preserving data
integrity - one of the key issues we looked at earlier.

2. Another type of information that may be present in the metadata is
security constraints: rules as to who is allowed to examine or update a
given data item.

a) In a file processing system, security must be done on a file by file
basis: any user having read/write access to a file has read/write
access to all the fields in it

b) In a DBMS system, security can be applied item by item. For
example, a student might be allowed to see (but not change) only
the grades he/she has earned; the registrar might be allowed to both
see and change the grades of any student
DEMO: connect to security user bjork;

set schema registrar;
select * from course_taken;
update course_taken set grade = 'C+'

where id = '5555555' and
department = 'BCM' and

 course_number = '101';
select * from course_taken;

connect to security user aardvark;
set schema registrar
select * from course_taken;
select * from student_info;
update course_taken set grade = 'A'

where id = '1111111';

c) Good use of security constraints can facilitate both preserving data
privacy and data security - tw more of the key issues we looked at
earlier.

11

3. A DBMS can take care of concurrency issues without the various
programs accessing the same database even needing to be aware of
each other - we discuss this in CPS352 .

a) In a file-processing system, every program that accesses a shared
file needs to be aware of all the other possible accesses to that file.
(Or - and more typically - files are locked so that only one program
can be modifying a given file at a time.)

b) A DBMS can manage concurrent access to data automatically.

DEMO:

start two "bjork" connections to accounts using db2 -t +c
widen windows
in both windows: select * from accounts

Now consider the following series of operations, which might be
used to effect a transfer of money from one account to another.
Clearly, we don't want someone else to be able to see the balances
between these two operations, lest he/she mistakenly believe that
'Aardvark' has $100 more than he really does
update accounts

set checking_balance = checking_balance + 100
where number = 42;

update accounts
set savings_balance = savings_balance - 100
where number = 42;

Issue the first update from one window, then try
select * from accounts; from the other. Note how it is
blocked. Now finish the transaction and commit it - note how the
access attempt can now “see” the updated balances
(Note: normally db2 treats each statement as a transaction; issuing
+c at startup caused it to require an explicit commit to end a
transaction.

4. Finally, a DBMS can help take care of issues pertaining to system
crashes, backups, etc in such a way as to ensure there is no loss of data
for transactions that have already completed. Again, we discuss this in
CPS352.

12

D. DBMS's also often make it easier for users to get at the data in an ad hoc
way.

1. Under a file processing approach, any access to data requires a
program to be written for that purpose.

For example, the get a report of total enrollement in all courses in our
sample registration database, a program would have to be written
containing:
- The definition of the record layout.
- Code to open and close the file.
- A loop like the following:

count = 0.0;
for each record in the enrollment file
 count ++;

- Code to print the final value of count

If no program has been written to generate a given type of report, then
someone who needs that type of report must either do without or be
willing to have a programmer paid to write it (and be willing to wait
until he/she can finish the program!)

2. Most DBMS's also include a QUERY LANGUAGE which allows a
moderately sophisticated user to get at information in the data base
directly, without going through an application program.

Example: A DBMS that supports the SQL query language would
allow an interactive user to get an answer to the above question by
typing a query like:

connect to cps221;
select 'Total enrollment is ', count(*)

 from enrolled_in;

a) Such queries are possible because the data dictionary is able to
provide a translation between item names such as enrolled_in and
actual physical locations in the database.

b) Thus, our picture becomes:

13

 USERS

Application Programs Query Language

DBMS

Actual data files

Thus, our DBMS has two interfaces: one for application programs
(which may call the DBMS using the regular procedure call
mechanism of the language they are written in), and one for direct
access by end users, using a query language.
(In fact, some microcomputer DBMS's have only the latter
interface.)

3. Recall the distinction we made earlier between "data" and
"information". The query interface allows users of the database to not
only access the raw data, but also to perform various operations that
convert it into useful information.

E. We have seen that putting a DBMS software layer between the data and
users of the data has many advantages in terms of eliminating redundancy
and inconsistency while facilitating security, integrity, multi-user access and
end-user queries.

1. However, there is a price tag on this: the additional layer of software
can result in a performance penalty:

a) At least, there is the additional processing overhead each application
incurs by going through a software layer to get at the data it needs,
rather than getting it directly.

b) If the application software "knows" how the data is stored
physically, it may be able to arrange its accesses to the data in an
optimum way in terms of processing efficiency. The DBMS level
deprives the application software of this knowledge.

c) Sophistication of DBMS design, coupled with increasing speeds of
computer hardware, now typically allow the benefits of a DBMS
without penalizing performance in an observable way, though the
answers on this are far from all being in. (More on this in CPS352).

14

2. In assessing the performance of a DBMS (or any system that services
multiple users), some of the factors we looked at in conjunction with
Operating System scheduling turn out to be relevant again.

a) The notion of throughput.

What do we mean by this?

ASK

In the case of a DBMS, we need to ensure that system throughput
is adequate for the demand. Consider what would happen to an
ecommerce site, say, if the throughput of its database system were
less than the rate of customer transactions!

b) The notion of response time

What do we mean by this?

ASK

Again, with interactive users, this can be critical. Who would
choose to make use of an ecommerce site if the response time to
queries were consistently too slow?

F. Finally, we should note that, in this unit of the course, we will be focussing
on what you might call "traditional" DBMSs that deal with information
that takes the form of numbers and short character strings.

However, we should note that there are specialized databases that deal
with other sorts of information - e.g.

1. Multimedia databases that store video or audio files.

Example: YouTube

2. Document databases that store large text files.

Example: the various journal databases maintained by the library

3. Information retrieval databases

Example: Google

15

