
CPS221 Lecture: The Critical Section Problem

last revised 9/4/12
Objectives

1. To understand the critical section problem
2. To understand various types of semaphores: binary, counting, with queue
3. To understand monitors and conditions
4. To understand how message passing can be used for synchronization

 Materials:

1. Handouts of critical section problem example
2. Projectable of general structure of a program with critical section
3. Projectable of inadequate software solutions to the critical section problem,

and of sequence resulting in starvation for last
4. Projectable of Peterson’s algorithm
5. Projectable of bounded buffer problem solved with semaphores
6. Projectable of (incorrect) Chopstick class from Dining Philosophers using spin

lock
7. Demonstration of diining philosophers problem solved with semaphores, plus

code to project
8. Diagram showing basic concept of a monitor
9. Projectable of various inadequate monitor-style solutions to the bounded

buffer problem (including code generated by compiler)
10.Projectable of solution to bounded buffer problem using a monitor with

conditions
11.Diagram showing monitor with conditions
12.Diagram showing monitor with conditions and queue of waiting signalers
13.IncorrectThreadedRacers.java, IncorrectThreadedRacersWithDelay.java, and

CorrectThreadedRacers.java to project and demonstrate
14.Demonstration of dining philosophers problem solved with synchronization,

plus code to project
15.ATM Example system code to project
16.Demonstration of dining philosophers problem solved using message passing,

plus code to project
17.Summary Handout

1

I. Introduction

A. We have been discussing the fundamental abstraction of operating
systems: the notion of a PROCESS.

1. The chief task of an operating system is to manage a set of
processes.

2. Most of the time, we think of the various processes on a system as
being independent - i.e. each represents a separate and distinct
task. In this case, the primary jobs of the operating system are to
prevent the various processes from interfering with one another,
and to ensure a fair allocation of the resources.

3. But, as we have already seen, it is often the case that separate
processes are used to work cooperatively on a common task -
either at a single location or distributed across a network
Moreover, a single process may contain several threads working
together on the overall task of the process. (For simplicity, we will
speak of “process” throughout - with the understanding that these
could be lightweight processes = threads)

B. However, concurrency gives rise to important, but challenging
problems. To illustrate one of these, we will use an exercise.

1. Write three accounts and balances on the board

Account

1234	
 $1000
5678	
 $2000
9999	
 $3000	

2

2. Give out handouts for critical section demo. Half the class should
get version A, half B.

3. Do part A. Are the results correct?

ASK

4. Now do part B. Are the results correct?

ASK

Why is the result wrong this time when it was right last time?

ASK

C. The problem we have just illustrated is called the critical section
problem. A critical section is a region of code in which a process uses
a variable (which may be an object or some other data structure) that
is shared with another process (e.g. the “code” that read, modified,
and wrote an account balance in the example you did.)

Problems can arise if two processes are in critical sections accessing
the same variable at the same time. (This is why the first
demonstration worked correctly - the two “processes” accessed two
different accounts, but the second did not because both “processes”
accessed the same account)

1. It is obvious how this problem can arise in certain cases:

a) Cooperating processes that share memory. (Note that threads
are always of this sort).

b) Operating systems for multiprocessors or multicore computers.

3

2. But even on a uniprocessor that uses message passing exclusively
for interprocess communication, the critical section problem can
still arise with regard to the operating systems own data structures
(message and process queues) if kernel code can be preempted by
an interrupt from another device.

D. It may seem that the problem is rare, since it depends on timing.

1. For example, in the case of account 9999, if Group B had started
its work just a few seconds later than it did, no problem would
have occurred.

2. A problem that depends on coincidental timing like this is often
called a race condition.

3. It is precisely this role of coincidental timing that makes the
problem particularly insidious - it is difficult if not impossible to
repeat a problem on demand - hence, it is important to use
strategies that are provably correct in all cases.

E. To deal with critical sections, we need an approach that guarantees:

1. MUTUAL EXCLUSION: under no circumstances can two processes
be in their critical sections for the same variable at the same time.

2. PROGRESS. At no time do we have a situation where a process is
forced to wait forever for an event that will never occur. (This
assumes, of course, that no process remains in its critical section
forever, thus “hogging” the resource.) (This is also known as the
NO DEADLOCK requirement.)

3. BOUNDED WAITING. No process waiting for a given resource
can be forced to wait forever while other processes repeatedly
access the same resource. (Again, this assumes that no process
remains in its critical section forever, thus “hogging” the resource.)

4

(This is also called the NO STARVATION or the FAIRNESS
requirement.)

II. Some Solutions to the Critical Section Problem

A. Solutions to the critical section problem are of two general types:

1. Solutions depending on special hardware facilities.

2. Solutions that are strictly software based - in the sense that the
only characteristic of the hardware they rely on is that if two
processes attempt to store a value in the same memory cell, then
the hardware will guarantee that the final value will be the same as
that written by one of the two, though nothing is guaranteed
regarding the order.

B. For simplicity, we will consider the case of just two processes, each
with one critical section accessing the same variable. These can be
extended to handle more complex situations.

C. Software solutions: We require that each process execute special entry
code before starting its critical section, and exit code upon leaving.
The problem is to specify what the entry and exit code must be. That
is, each process looks like this:

PROJECT

while(true)
{
	 non-critical section;
	 entry protocol;
	 critical section;
	 exit protocol;
	 remainder (non-critical) section
}

5

D. Some inadequate solutions: (These come from different books. There
are a few more than what’s in your text, and I think the notation is a
bit more understandable. We consider them because the mental
exercise in discovering the problem in each case helps develop the
sort of thinking we need to use when thinking about parallel
computation.)	

In each case, we assume the two processes have pids i and j. We give
the code for process i; the code for process j is identical except for
switching i and j.

1. (Silberschatz and Galvin fourth ed p. 167) Assume the two
processes share an integer variable turn for control of access to the
critical section, in addition to the critical variable(s) per se

PROJECT
white(true)
{
	 while (turn != i)	 ;	 // Spin lock
	 critical section
	 turn = j;
	 remainder section
}

Why doesn’t this work?

ASK

Violates the progress requirement: Once one process is finished
computing, the other process gets one more turn to enter its critical
section, after which it can never enter its critical section again.

2. (Silberschatz and Galvin alternate ed page 86): Assume the two
processes share a boolean array flag (indexed by process id) for control
of access to the critical section, in addition to the critical variable(s)
per se

6

PROJECT
while(true)
{
	 while (flag[j])	 ;	 // Spin lock
	 flag[i] = true;
	 critical section
	 flag[i] = false;
	 remainder section
}

Why doesn’t this work?

ASK

Violates the mutual exclusion requirement. Each process could see the
other's flag false before either sets its flag true, allowing both to be in
their critical section at the same time.

3. (Silberschatz and Galvin fourth ed p. 168) flag[] array same as in
previous.

PROJECT

while(true)
{
	 flag[i] = true;
	 while (flag[j])	 ;	 // Spin lock
	 critical section
	 flag[i] = false;
	 remainder section
}

Why doesn’t this work?

ASK

Violates the progress requirement. There is a race condition - Each
process sets its flag true before either examines the other's flag, so

7

if both processes set their flag true before either examines the
other’s flag, they will deadlock.

4. (Silberschatz and Peterson 1st ed) flag[] array same as in previous.
This one appears correct as first, but contains a subtle error that
shows just how subtle concurrent problems can be.

PROJECT

while(true)
{
 flag[i] = true;
 while (flag[j])	
 {
 flag[i] = false;
 while (flag[j])	 ;	 // Spin lock
 flag[i] = true;
 }
 critical section
 flag[i] = false;
 remainder section
}

Why doesn’t this work?

ASK

Violates the bounded waiting requirement. Can lead to starvation
for both processes if they alternate in a certain pattern:

8

Process 0	
 Process 1

sets flag[0] true
	
 sets flag[1] true
first while - sees flag[1] true
	
 first while - sees flag[0] true
sets flag[0] false
	
 sets flag[1] false
second while - sees flag[1] false
	
 second while-sees flag[0] false
sets flag[0] true
	
 sets flag[1] true
first while - sees flag[1] true
	
 first while - sees flag[0] true
...

PROJECT

While admittedly such the establishment of such a pattern - and its
continuation over a long time - is improbable, it is not impossible.
Two cores on a multicore computer, or identical CPU's sharing a
common memory might well remain in such a situation if they
ever enter it - a potentially insidious situation!.

E. Peterson’s algorithm is a totally correct software solution to the
critical section problem.

PROJECT

1. Let’s demonstrate the correctness of this algorithm

a) It guarantees mutual exclusion.

(1)Clearly, if one of the processes is already in its critical
section, the other cannot enter because the first process’s

9

flag[] value is true and the entry protocol includes setting
turn to the “wrong” value.

(2) If both processes try to enter their critical section at about
the same time, only the one that sees turn having the “right”
value - i.e. the one that set it to the “wrong” value first - will
be able to do so.

b) It guarantees progress: For deadlock to occur, both processes
would have to be stuck in their while loops. But this cannot be
the case, since depending on the value of turn one of the two
processes will necessarily be able to proceed. (Both turn == 0
and turn == 1 cannot be simultaneously false if the only
possible values for turn are 0 and 1!)

c) Guarantees bounded waiting: Suppose that one process is
starving while the other is in its critical section. (Assume
without loss of generality that process 0 is the one starving - it
has set flag[0] true and is stuck at the while loop.)

When process 1 exits its critical section, it sets flag[1] false.
For process 0 to starve, process 1 would have to complete its
remainder section and return to the top of the loop and set flag
[1] true before process 0 sees it false. But, in this case, process
1 sets turn = 0 and can proceed no further since flag[0] is true.
Meanwhile, process 0 will see flag == 0 and proceed.

2. Though Peterson’s algorithm satisfies all our criteria, it has some
limitations:

a) Complexity: three variables (turn and a two-element array)
needed to control one critical section. If a program has several
critical sections, the code could easily become burdensome.

10

b) Limited as it stands to two processes, though it can be extended
to any number at the price of added complexity.

c) Relies on busy-waiting (spin locks) - hence a processor can be
tied up for long times doing nothing while waiting to enter a
critical section.

d) Not suited to distributed environments. For such an
environment we need an algorithm that calls for each variable
only to be altered by a single process, though it may be
inspected by any. In this algorithm, each process must update
turn when it wants to enter its critical section.

F. Hardware-based solutions.

1. The complexity of software solutions arises because we cannot, in
general, guarantee that a variable will not be altered between the
time that a given process looks at it and the time it itself tries to
change it. This is because inspecting a value and altering a value
normally require two or more machine instructions, with the
possibility of an interrupt (on a uniprocessor) or an access from
another processor intervening.

2. Special hardware provisions of a fairly simple sort can greatly
simplify the mutual exclusion algorithms.

a) On a uniprocessor, we can generally inhibit interrupts for a
brief time. Many operating systems rely on this method totally
for their own internal critical sections; and the operating system
can use this method to furnish a system service to processes for
their own use. (We will say more about what form this service
might take shortly.) This will not work with multiprocessors,
however.

11

b) Many processors have an instruction which tests and modifies a
location in memory in a single, atomic operation, such that no
other operation can intervene between the time the location is
examined and the time it is modified.

For example, Intel IA32 has an XCHG operation that
exchanges a register and a memory location. If one uses 1 to
represent the boolean value true and 0 false, then a critical
section might be protected by a single variable as follows:

entry protocol

loop:
	
 put 1 in EAX
	
 XCHG EAX and the variable protecting the critical
section
	
 if EAX is 1, branch to loop

exit protocol:

put 0 in EAX
XCHG EAX and the variable protecting the critical section

12

III.Semaphores

A. One problem with the solutions we have looked at thus far is that they
are a bit messy, and thus prone to errors in implementation.

B. A facility first proposed by Edsger Dijkstra called a SEMAPHORE
builds on one of these solutions to provide a cleaner solution. In its
simplest form, a semaphore is a boolean variable with two indivisible
atomic operations possible on it:

P(s): 	
 	
 while (s == 0) ;
	
 	
 	
 	
 s = 0;

V(s): 	
	
 s = 1

1. The names P and V are from two Dutch words proberen (to wait)
and verhogen (to increment). The text calls these wait and signal.
But I will stick with P and V because wait and signal will be used
in another context with a somewhat different meaning.

2. It is important to note that these operations are indivisible atomic
operations, so they must either be implemented using an
appropriate atomic hardware primitive or on top of a software
strategy such as Peterson’s algorithm. For example, P and V could
be implemented with XCHG as follows

P(s);	
 	
 loop:
	
 	
 	
 Put 1 in EAX
	
 	
 	
 XCHG EAX and s
	
 	
 	
 if EAX != 0, branch to loop

V(s)	
 	
 Put 0 in EAX
	
 	
 XCHG EAX and s

13

C. A generalization of the basic semaphore is called a counting
semaphore, which can assume any (non-negative) integer value. The
operations - which must be done indivisibly - are:

P(s): 	
 	
 while (s <= 0) ;
	
 	
 	
 s --;

V(s): 	
	
 s ++

1. Counting semaphores can be used for a resource of which there are
a fixed number (> 1) of copies.

2. Note that the binary semaphore is a special case, with s
constrained to assume only the values 0,1.

3. Counting semaphores are a bit more complex to implement. A
counting semaphore could be implemented using a second, binary
semaphore (called here s'):

P(s):	
 	
 do
	
 	
 {
	
 	
 	
 P(s');
	
 	
 	
 temp = s;
	
 	
 	
 if s > 0 then s = s - 1;
	
 	
 	
 V(s')
	
 	
 } while temp <= 0;

V(s):	
 	
 P(s’);
	
 	
 s ++;
	
 	
 V(s’)

D. One problem with a semaphore is that it uses busy-waiting (a spin
lock). An improvement is to associate a queue with the semaphore, so
that we have:

P(s): 	
 	
 s --;
	
 	
 	
 if s < 0 then block this process in s’s queue

14

V(s): 	
	
 s ++;
	
 	
 	
 if s <= 0 then unblock one queued process

1. When this strategy is used with a semaphore whose initial value is
1, the result is binary semaphore behavior.

2. As a consequence of this definition, the value of s has the
following meaning

a) If s > 0, it is the number of processes that can do P() without
blocking.

b) If s < 0, it is the number of processes that are blocked on the
semaphore.

3. In the literature, it is common to find that no assumptions are made
about the behavior of the queue - i.e. it is not necessarily a true,
FIFO queue. In practice, though, it is sometimes desirable to
require fair (FIFO) behavior for the queue - in which case the
description of the semaphore will say this explicitly.

(A semaphore with a FIFO queue associated with it is the variant
we will use in our examples.)

4. How do we implement a semaphore with a queue? We treat it as a
critical section in its own right, with its mutual exclusion
guaranteed by a lower level method such as a binary semaphore or
one of the software schemes. (Here the busy waiting is very short
and can be tolerated.)

E. Some examples of using semaphores to solve classical problems

1. The bounded buffer problem

PROJECT code from book

15

a) mutex is a binary semaphore, while empty and full are counting
semaphores representing the number of empty and full slots in
the buffer, respectively. Therefore, empty is initialized to the
buffer size, while full is initialized to 0.

b) Why is mutex needed along with empty and full?

ASK

mutex is needed for mutual exclusion. Without it, if the buffer
is partially full it might happen that the producer and consumer
both try to update the buffer at the same time

c) Go over logic of code

2. The Dining Philosophers.

a) In lab we solved this problem using a spin lock - which (as was
pointed out then) is a poor solution due to wasting CPU cycles
and is not actually a correct solution due to a potential timing
problem.

PROJECT incorrect Chopstick class with spin lock

Can anyone see the problem?

ASK

Though unlikely, the following sequence of events could
occur:

One thread sees owner == null - leaves its while loop
A second thread sees owner == null - also leaves its while
loop
First thread sets owner = who (itself)
Second thread sets owner = who (itself)

16

Now both threads think they are the owner of the resource - the
problem we were trying to avoid.

Note that a concurrent program is only considered correct if
there is no timing-dependent sequence of operations that could
make it fail!

b) A totally correct solution can be created using semaphores.

DEMO

c) Go over code in class Philosopher. (Note: we have totally
replaced the Chopstick class used in lab by a semaphore, with
the pickup() and putdown() operations on the chopstick
being changed to semaphore operations P() and V()),

F. Problems with the semaphore solution to the critical-section problem:

ASK

1. The burden is on the programmer to use the semaphore. There is
no way to stop a programmer from updating a shared variable
without first doing the necessary P(), short of manually inspecting
all code. Thus, mutual exclusion can be lost through carelessness
or laziness

2. There is a danger of accidentally doing P() on the wrong
semaphore, thus gain losing mutual exclusion.

17

IV.Message-Passing

A. When we talked about processes and threads, we noted that there are
two basic approaches to interprocess communication. What were
they?

ASK

Shared memory
message passing.

B. The critical section problem is peculiar to the shared memory model,
but also arises in the operating system code used to support message
passing (since the message queues typically are accessed by multiple
processes on the same computer. The critical section problem is
typically avoided for application code in the message passing model
by: having each shared variable be “owned” by one process. Any
other process wishing to change it must do so by sending a message to
the owner process.

C. However, the need for synchronization between processes still arises.
This is typically handled by means of exchanging messages according
to some protocol.

Example: A message passing solution to the Dining Philosopher’s
problem

1. DEMO

2. PROJECT Code for Philosopher

3. PROJECT Code for coordinatorLoop() in Dining Room

D. The basic idea is this: the operating system makes the following
primitive operations available to processes:

18

1. SEND destination-specifier message

2. RECEIVE [source-specifier] message

(Explicit specification of the source of a received message is
possible on some systems but not others)

Message is usually a sequence of bytes of arbitrary length whose
interpretation is determined by the cooperating processes (i.e. the
operating system simply passes the bytes from one process to the
other.)

E. The designer of a message passing system must consider quite a
number of basic questions, including the following:

1. How does a sender specify a destination?

a) Some systems set up a communication CHANNEL between
processes, so that the sender specifies the destination by
channel. (This is analogous to the idea of opening a file by
name and then doing all further IO operations by specifying the
channel that was named in he open call.)

b) Other systems require the sender to specify the name or process
id of the intended recipient.

2. If communication channels are used, are they tied to two specific
processes?

a) Most systems allow several different processes to send
messages on the same channel.

b) Some systems allow several different processes to receive from
the same channel. (In this case, the sender may not necessarily

19

know which process will actually get the message. This is fine
if all possible recipients provide the same basic service.)

c) If several processes can receive from the same channel, another
question that must be answered is: does each message go to all
processes connected to that channel or only to the first receiver?
(The answer is usually the latter.)

3. Can several messages be queued in one channel or for one
process? If so, is there any guarantee as to the ORDER in which
they will be delivered to subsequent receiver operations (FIFO)?

4. Is the sender of a message forced to wait until the receiver has
responded before proceeding?

a) Some systems require this;

b) Others make it an option - in which case a third primitive may
be supported:

SEND_AWAIT_REPLY destination-specifier message

5. If a process tries to do a receive when no messages are available,
does it wait until a message arrives?

a) Many systems allow a receiver to specify that it wants to
continue execution of no messages are waiting. In this case, it
will have to try the receive operation again later.

b) Many systems allow a receiver to specify a timeout period,
such that it will wait for a message for a certain period of time,
after which it will give up.

20

c) Some systems provide a facility whereby an incoming message
can interrupt the execution of the receiver to notify it that a
message is waiting.

6. If a receiver can specify a channel on which it wants to receive a
message, can it specify some sort of LIST of channels, such that if
a message is pending on any of them it will get it?

7. If a receiver can specify several different possible channels in a
receive operation, is there any guarantee as to which channel it
will receive from if messages are pending on several of them?

F. Example: Unix interprocess communication.

1. Interprocess communication is done using a called a SOCKET.
Sockets can be used for interprocess communication on the same
system and also to send messages over a network to processes on
another system.

(The pipeline facility we discussed earlier is a much less general
precursor to sockets. On modern systems, pipelines are actually
implemented using sockets to link the processes)

2. The socket facility supports a variety of PROTOCOLS regarding
message format, etc. We will describe only one - in which
messages are arbitrary-sized packets of bytes.

3. The following system services are used for accessing sockets:

a) socketpair creates a pair of connected sockets.

(1)What is sent on one end comes out the other end and vice
versa. (Therefore, a process can write to its end of a pair
of connected sockets and then read from the same socket
without getting its own message back.)

21

(2)Normally cooperating processes are set up by a series of
fork operations from a common parent. In this case, the
parent will normally create the socket pairs as it creates the
processes, and the children will inherit them from the parent.

b) Alternately, individual sockets may be created by the socket
service and connected via the connect service. In this case, the
bind and getsockname services may be used to give a socket a
name and to find out the name of a socket of interest.
Depending on the protocol in use, multiple connections to the
same socket are possible.

4. In the simplest approach to using sockets (using the STREAM
protocol), data is sent and received as a stream of bytes. This
means that no internal record is kept in the socket as to where one
message ends and another begins; thus, the receiver must know
how long an incoming message is before it can receive it correctly.
(This is normally handled by agreement between the sender and
receiver.)

5. The send and recv services transmit data over sockets. Send does
not wait until the message is received (but may wait if there is no
room for additional data in the stream); recv may or may not wait
if no data is available, depending on the setting of options on the
socket when it is created.

6. The select service can be used to find out which sockets from a list
specified by the caller currently have messages pending (if any).
The recv service is then used to actually get the individual
messages one at a time in whatever order the receiver wishes to.

22

V. Monitors

A. While semaphores do provide a shared memory solution to the critical
section problem, they are not an ideal solution because of the
possibility of programmer error, such as forgetting to use P() and V(),
or using them incorrectly.

B. An improvement on semaphores is the MONITOR.

1. At about the same time that pivotal work was being done on
concurrency primitives, another area of research was developing
the concept of data abstraction. The key idea is that we define an
abstract data type in terms of a set of visible procedures and a set
of hidden implementation code. The notion of class in OO is one
realization of this concept.

2. The monitor concept is a fusion of ideas from abstract data types
and a notion called critical regions which we will not separately
discuss.. A monitor provides the rest of the world with a limited
set of mechanisms for accessing some protected data.

3. A monitor resembles an OO class, but is implemented in such a
way as to allow only one process to be executing any of its
methods on a given object at any time.

a) Conceptually, the compiler for a programming language that
includes monitors will create a single “mutex” semaphore (with
FIFO queue) for the monitor, and will insert P and V operations
at the start and end of each method of the monitor.

b) While research programming languages that fully implement
monitors have been created, no regular programming language
does - though languages like Java have facilities based on them.

23

c) We will first discuss monitors conceptually, and will then
discuss their realization in Java.

4. A monitor may be pictured like this:

PROJECT

P3 P2 P1

 P0

(executing some
entry in the
monitor)

Queue of processes
waiting to execute
some entry

when the monitor entry code P0 is executing finishes, P1 will be
allowed to execute its entry (with may not be the same as the one
P0 was executing.)

24

C. Example: the bounded buffer problem solved using a monitor. (Note:
this solution is incomplete - but demonstrates the need for a feature
we will add shortly.)

1. We would have a monitor named buffer with two entries:

insert - put a character in the buffer
remove - remove and return a character from the buffer

The code we would write would something like this in a programming
language that includes monitors:

PROJECT

monitor buffer
{
	 -- some suitable collection of characters

	 void insert(char c)
	 {
	 	 put c in the buffer;
	 }

	 char remove()
	 {
	 	 remove a character from the buffer and
 return it;
	 }
}

The monitor code generated by the compiler will guarantee that at most
one of these entries is active at any one time

2. The compiler would add a semaphore and P and V operations so that
the code actually implemented would look like this. (Code added by
the compiler in boldface)

PROJECT

25

class buffer
{
	 Semaphore mutex = new Semaphore();
	 -- some suitable collection of characters

	 void insert(char c)
	 {
	 	 P(mutex);
	 	 put c in the buffer;
	 	 V(mutex);
	 }

	 char remove()
	 {
	 	 P(mutex);
	 	 char c;
	 	 remove a character from the buffer and
 put in c;
	 	 V(mutex);
	 	 return c;
	 }
}

D. As we noted earlier, something is missing from this solution. What?

ASK

1. There is no provision for ensuring that the producer doesn’t try to
insert a character into a full buffer, or that the consumer doesn’t try to
remove a character from an empty buffer. Obviously, this is a
problem we need to solve!

2. Here are a couple of inadequate ways to attempt to solve this problem.

a) Add a check on the buffer status with a spin lock to each entry -
e.g. insert() could be changed to:

26

void insert(char c)
{
	 while (buffer is full) ; // spin lock
	 put c in the buffer;
}

(and remove() could be changed similarly).

(1)But this will not work as we want. Why?

ASK

(2)The code generated by the compiler for this method would be:

PROJECT
void insert(char c)
{
	 P(mutex);
	 while (buffer is full) ; // spin lock
	 put c in the buffer;
	 V(mutex);
}

which means the spin look lies inside the critical section
protected by the semaphore, which means that if a process
entered this loop it would retain mutual exclusion and thus the
consumer could never get into the monitor to create a free
space! As a result, we would have deadlock!

b) Add a method to the monitor to check whether the buffer is full (and
likewise a method to check whether it is totally empty.) The producer
code that uses insert() would be modified to look like this:

while (buffer.isFull()) ; // spin lock
buffer.insert(character);

(and similarly for the consumer code that calls remove()).

27

(1)While this would put the spin lock outside of any monitor entry,
eliminating the above problem, and would work for this
specific example, it would create a new problem if we had more
than one producer process What?

ASK

(2) If there were more than one producer process (or the like in
some other problem), then there could be one space free in the
buffer which two producers see as available - but the second
one to actually call insert() would end up trying to put a
character in a full buffer!

(3) In other words, there cannot be a “break” in mutual exclusion
between the check and the actual insert.

E. To cope with problems like this, the notion of monitors includes another
type of variable called a CONDITION, with operations wait and signal.

1. The condition is superficially like the semaphore, but has three
important differences:

a) A process executing a wait is ALWAYS blocked.

b) A signal executed when the queue for the condition is empty has
no effect - it is not remembered; it is simply ignored.

c) Also, the queue of waiters on a given signal is assumed to be
FIFO.

2. With the addition of condition variables, we can give a complete solution
to the the bounded buffers problem using a monitor:

PROJECT

28

monitor buffer
{
	 -- some suitable collection of characters
	 Condition notFull, notEmpty;

	 void insert(char c)
	 {
	 	 if (the buffer is full)
	 	 	 wait(notFull);
	 	 put c in the buffer;
	 	 signal(notEmpty);
	 }

	 char remove()
	 {
	 	 if (the buffer is empty)
	 	 	 wait(notEmpty);
	 	 remove a character from the buffer and
return it;
	 	 signal(notFull);
	 }
}

3. In the simplest variant of this, we impose the restriction that a
signal operation - if it appears in a given monitor entry - must
appear at the very end. When a signal is executed, the calling
process leaves the monitor, and the first process on the queue
awaiting that condition is admitted, taking its place. We can
picture such a monitor as follows:

PROJECT

29

P7 P6 P5

 P4

(executing
some
entry in the
monitor)

Queue of processes
waiting to execute
some entry Queue of processes

waiting on
condition C1

Queue of processes
waiting on
condition C2

Queue of processes
waiting on
condition C3

P0 P2

P1

a) If P4 signals C1 at the end of its entry, P0 will resume executing
its entry.

b) If P4 signals C3, P1 will resume its entry.

c) f P4 signals C2, or finishes its entry without signaling any
condition, P5 will be allowed to execute its entry.

30

4. A variant of this removes the restriction that a monitor entry can
only signal as its last act. (This would also allow a given entry to
generate more than one signal.) This raises a problem - though -
when a signal awakes a process, and the signaler wishes to remain
in the monitor, one must yield to the other. One way to handle this
is as follows: if an entry contains a signal other than as its last
statement, the calling process is suspended while the awakened
process completes its work. The calling process has priority to re-
enter the monitor over any processes awaiting at the main gate.
This can be pictured as follows:

PROJECT

31

P7 P6

 P5

(executing
some
entry in the
monitor)

Queue of processes
waiting to execute
some entry Queue of processes

waiting on
condition C1

Queue of processes
waiting on
condition C2

Queue of processes
waiting on
condition C3

P0 P2

P1

P4 Queue of waiting
signalers

a) If P5 signals C1 at the end of its entry, P0 will resume executing
its entry.

b) If P5 signals C3, P1 will resume its entry.

c) f P5 signals C2, or finishes its entry without signaling any
condition, P4 will be allowed to resume executing its entry.

32

F. Monitors in Java

1. We have previously discussed support for threads built into Java.
We now turn to Java’s mechanisms for handling the critical section
problem. Java’s approach is based on the monitor concept, but is
not a strict implementation of it. (In fact, to my knowledge, no
regularly-used programming language implements monitors as we
have just discussed.)

2. In Java, every variable has a monitor associated with it, though the
monitor is not used for most objects. (In fact, the monitor may not
even be created until the first time it is used.)

3. The synchronized statement allows a block of code to be executed
under mutual exclusion using the object’s monitor -

a) e.g. in the following code:

bar();
synchronized(foo)
{
	 baz();
	 frobbish();
}
foobar();

while he methods baz() and frobbish() are being executed, no
other code synchronized on the object foo may be executed; but
this is not true while either bar(); or foobar() is executed.

b) If a thread attempts to enter a synchronized block on some
object while another thread is in a synchronized block on the
same object, it is forced to wait until the previous thread has
finished its work.

33

c) It is also possible to declare a method synchronized. This is
equivalent to synchronizing on the “this” object of the method.

Example:

synchronized void something()
{
	 ...
}

is equivalent to

void something()
{
	 synchronized(this)
	 {
	 	 ...
	 }
}

d) Note that synchronization locks the the monitor of a specific
object - not a method.

Example: consider the following

class SomeClass
{
	 synchronized void m1()
	 	 ...
	 synchronized void m2()
	 	 ...
}

SomeClass o1, o2;

Now suppose we have threads executing code as follows:

34

Thread 1:	
 o1.m1();
Thread 2:	
 o2.m1();
Thread 3:	
 o1.m2();

Threads 1 and 2 can execute their code simultaneously, because
they are using different objects and hence different monitors.
But Threads 1 and 3 cannot execute their code simultaneously
because though they are using synchronized methods of the
same object.

4. To see how to use synchronization in Java, we will extend the
“Racer” example we did earlier.

Consider the racer program again. As it stands, each racer keeps
running until it completes, so we have no way of knowing who
won except by careful observation.

a) Suppose, instead, we add a StringBuffer variable to the main
class, that allows the winning thread to report its name. (Note
that all four racers share the same StringBuffer.)

(1)We set the initial contents of the StringBuffer to empty.

(2)When a thread finishes, it checks to see if the
StringBuffer is empty. If it is, it writes its name into the
StringBuffer. (We have to check first, else threads that
finish later will overwrite the name of the winner). At the
end of the race, the main program writes the results. The
code to do this can be added to the end of the run() method
of the racers.

SHOW CODE - run() method in
IncorrectThreadedRacers.java

DEMO

35

b) Is this code correct?

ASK

Surprisingly, the answer is no! Although it will work correctly
most of the time, it can sometimes produce the wrong result.
Consider the following scenario: suppose Red finishes with
Green close behind it. Suppose, further, that due to the way the
threads are scheduled, the following series of events occurs:

(1)Red finishes, and checks to see if the StringBuffer is
empty - it is.

(2)Green finishes, and checks to see if the StringBuffer is
empty - it still is.

(3)Red writes its name into the StringBuffer

(4)Green writes its name into the StringBuffer.

(5)Although Red won, Green is reported as the winner!

(6) It may be argued that this scenario depends on the race being
very close, and even then is improbable. Try telling that to
runners in the Olympics! The fact that a scenario like this is
rare does not mean its impossible, and the insidious thing is
that finding such an error during testing, or making it repeat
itself during debugging, is virtually impossible. Thus, the
only way to produce correct concurrent software is to make
sure such a scenario cannot occur.

c) To see that this is really a problem, we will run a version of the
program that has been modified to insert some extra delay into

36

the finishing code, between the time that the thread checks the
contents of the StringBuffer (and sees that it’s empty) and
the time that the thread writes new content into it.

DEMO: IncorrectThreadedRacersWithDelay

SHOW CODE at end of run() method - note that the logic is
the same, but that delay loops and println’s have been added.

d) Now, we will look at a version of this program that uses
synchronization to achieve correct results.

SHOW CODE - CorrectThreadedRacers.java - end of run()
method.

DEMO

5. A weakness in the Java solution to the critical section problem is
that while one thread has locked an object, other threads can still
access it through code that is not specified as synchronized.

a) Java is defined this way because locking an object involves a
fair amount of overhead, so we don’t want to do it unless we
have too.

b) However, this leaves open the possibility that a programmer
might forget to specify that a given section of code is
synchronized when it should be, negating the protection
afforded by declaring some other section of code for the same
object to be synchronized.

(Sort of like the possibility that one roommate might lock the
door of the room and the other roommate might forget to lock
it, leaving the first roommates’ stuff vulnerable.)

37

6. What about support for something like conditions in Java? For
each monitor, Java supports what amounts to a single condition
through the methods wait(), notify(), and notifyAll() that
are defined in class Object, and therefore available for all objects.

a) A thread that holds a lock on some object can execute the wait
() method of that object. When this occurs:

(1)The thread’s lock on the object is released, so other threads
can access it.

(2)The thread that executed the wait() is rendered unable to
proceed - it is said to be blocked on that particular object.

b) Some other thread (which must now hold the lock on this
object) may subsequently execute the locked object’s notify()
method.

(1)When this occurs, one thread that was blocked on the object
is unblocked. (If several threads are blocked on the same
object, there is no guarantee as to which is unblocked.)

(2)The thread that was unblocked may proceed after re–
obtaining the lock on the object.

c) It is also possible to use the notifyAll() method of an object
to unblock all threads that are blocked on that object - though
they will, of course, have to proceed one at a time since a thread
that was blocked must re-obtain the lock on the object before it
can proceed.

d) The wait() method can optionally specify a timeout value. If
it is not notified within this time period, the thread is unblocked
anyway.

38

e) To illustrate how this mechanism can be used, consider a
Java solution to the Dining Philosophers problem using
synchronization with wait and notify. (This is actually the typical way
to solve this problem in Java, rather than using spin locks or
semaphores as we have demonstrated previously, or message passing
as we will discuss shortly)

(1)DEMO

(2)PROJECT Chopstick class from Java solution

7. Another place where wait() and notify() is useful is in cases
where we want to avoid having the awt event thread do extensive
computation. In this case, we use a separate thread to do the
computation, which waits until the awt thread notifies it that an
appropriate event has occurred.

There are several examples of this in the ATM Example system.

a) EXAMPLE: SHOW State Diagram for class ATM, then

SHOW CODE for class ATM

(1)Note that ATM implements Runnable, and has a run()
method. When the simulation starts up, a Thread is created
to execute this (i.e. there is a special thread for actually
running the simulation.)

(2)The run() method uses wait()/notify() in two places:

(a) When in the OFF_STATE, the thread waits. It will be
notified by a call of switchOn() by the awt thread.

39

(b)When in the IDLE_STATE, it waits. It will be notified
either by a call to cardInserted() or by a call to
switchOff() from the awt thread

b) Threads with wait/notify are also used for the simulation of the
Keyboard and the EnvelopeAcceptor.

(1) In the former case, the main thread waits until the user clicks
a button simulating one of the keys on the keyboard.

(2) In the latter case, the main thread waits until the user clicks
the button to insert the envelope - or until a timeout occurs.

SHOW CODE for acceptEnvelope() method in class
SimEnvelopeAcceptor.

8. Java 1.5 added the package java.util.concurrent and its
subpackages, which provide more complete concurrency support
(including both full-blown monitors and semaphores, among other
things) for cases where this is needed.

VI. Summary Handout

40

