
CPS331 Lecture: Constraint Propagation as an Alternative to Search

last revised February 22, 2012
Objectives:

1. To introduce constraint propagation
2. To show how the human eye evidently does a form of constraint propagation

Materials: 

1. Projectable and handout of Garden Puzzle
2. Prolog generate and test +  “human” solution process
3. Projectable of Sudoku Puzzle
4. Sudoku solver program; demo.sudoku puzzle
5. Projectable of partial line drawing showing ambiguity when only part seen
6. Projectable of complete line drawing to be labeled
7. Image Editor project (used in the past in CPS112 and 122) with parrots image
8. Projectable of Nilsson (1998) Figure 6.16
9. Projectables of progressive labeling of #6 using Waltz procedure
10.Projectables of two interpretations of line drawing with shading
11.Handout problem with possible vertex labelings and figure to label

I. Introduction

A. Recall that, in our introduction to search, we mentioned that a key problem 
in search is something called “combinatorial explosion”.  Basically, what 
we are dealing with is that state space size can grow very rapidly - e.g. we 
showed that, for a search with 13 steps and 3 alternatives at each node the 
state space contains over 1 million nodes!  If we go to just 20 steps, the 
size increases to over 3 billion!  When we hit 21 steps, the search space 
size is greater than the present population of the world.

B. Although heuristic methods can help a great deal by helping us to 
focus on the alternatives that are most likely to lead to a solution, good 
heuristics are not necessarily easy to find.

C. In certain cases, we can minimize search or even avoid it altogether by using 
a strategy called constraint propagation.  While the problems to which this 
applies are limited in number, the benefits to be gained are enormous.
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D. One weakness of standard AI search techniques, like those we’ve been 
looking at, is that they are often quite different from the ways humans 
solve the problem.

1. Recall what we saw in the case of solving the “Garden Dilemma 
Puzzle” using a search.

HANDOUT + PROJECT

a) The Prolog program we looked at used a naive generate and test 
strategy.

PROJECT

b) Recall that we saw that, while this works for a small problem, it 
quickly falls prey to combinatorial explosion (e.g. with our 
program a problem with 15 people would take 25 times the age 
of the universe to solve!)

c) For this particular sort of problem, I’m not aware of any good 
heuristics that would allow us to use an informed search (and I 
suspect this is not a hot research area!)

2. Of course, a human wouldn’t solve the problem this way at all.

PROJECT  human approach

That is, a human makes use of constraints to fairly quickly home in 
on a solution.  For example, since we are told that each person 
bought a different tool, we can eliminate that tool as a possibility 
for the other four people once we learn which person bought it.

3. When a problem lends itself to the application of constraints, it is 
often possible to arrive at a solution very quickly.

II. Constraint Propagation in Sudoku

A. We will use, for further examples, the familiar Sudoku puzzle.
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1. Explain the puzzle

2. Solving a Sudoku can be regarded as a search problem in which the 
states correspond to partially filled in puzzles.The start state is the 
given initial state

a) The goal state is a state in which all squares are filled in 

b) The operators are “write a particular number in a particular square”

c) Example: consider a typical puzzle:

PROJECT Sudoku Solver program with demo puzzle

                                3    7            2              
          4    2

  9    1                                    7           5
         6             5                    3
            
                        9     2      6
                 5                    3           9

  5            6                                   1    8
                                             2     7

          2             6    7

(1)The available operators (consistent with the rules of the 
game) are

3



Put a 6 in the upper-left corner
Put an 8 in the upper-left corner
(1-5, 7, and 9 are ruled out by others in same row/column/
block)
...
Put a 3 in the lower-right corner
Put a 4 in the lower-right corner
Put a 9 in the lower-right corner
(1, 2, and 5-8 are ruled out by others in same row/column/
block) 

(2) In fact, for this particular state, there are 175 legal operators!

3. However, if we tried to use a conventional search technique to 
solve this puzzle, we would quickly run into combinatorial 
explosion

B. The key to solving a puzzle like this is to recognize that, in a legal 
puzzle, at any time, there will always be one or more squares whose 
value is constrained to a single value.

Example: In this puzzle, the third square in the first row is constrained 
to be an 8 by the fact that no other value is possible.

- 3, 7, 2  are eliminated by other values in the same row   
- 5, 6 are eliminated by other values in the same column
- 4, 1, 9 are eliminated by other values in the same block

Example: In this puzzle, the second square in the first row is 
constrained to be a 5 by the fact that this is the only square in the 
block where a 5 can go.  (5 cannot go in the other vacant squares in 
the block due to a 5 elsewhere in the same column) 

Example: In this puzzle, the first square in the second row is 
constrained to be a 7 by the fact that this is the only square in the 
block where a 7 can go.  (7 cannot go in the other vacant squares in 
the block due to a 7 elsewhere in the same row.)
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C. This leads to the following strategy for solving this puzzle:

1. Initial setup:

a) Associate with each square the set of legal values that can 
appear in that square, based on constraints propagated from 
other squares in the same block, row, and column.

Example: The legal values for the vacant squares in the upper-
left block are  

{ 6, 8 }	

 { 5, 8 }	

 { 8 }
{ 3, 6. 7. 8 }	

    -	

    -
   -	

    -	

 { 3, 8 }

b) Associate with each block a list of squares where each value 
that has not been used in that block can occur [ which can be 
extracted from the above ]

Example: In the upper-left block

1 has been used
2 has been used
3 { middle-left, lower-right }
4 has been used
5 { upper-middle }
6 { top-left, middle-left }
7 { middle-left }
8 { top-left, top-middle, top-right, middle-left, lower-right }
9 has been used

c) Do something similar for each row

d) Do something similar for each column

2. Now perform the following process repeatedly until the puzzle is 
solved
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a) Select a set which contains just one element (if there is none, 
we’re stuck)

b) Give the corresponding square the appropriate value

c) Propagate constraint resulting from this choice to other cells

(1)The value just given to the cell can be removed from the sets 
of possible values for other cells in the same row, column, 
and block

(2)The square can be removed from the sets of possible 
locations for unused values in the row, column, and block of 
which it is a part

3. DEMO: Run Sudoku Solver program with demo.sudoku 

a) Click OK to get to point where solution has been set up

b) Click Show Details to show possible values for each cell

Observe:

- If a cell has only one possible value, it is shown in yellow.  
(This includes cells which represent the only possible location 
for the value in a row, column, or block.)

c) Step through first few steps of solution, showing how constraint is 
propagated

Observe:

- The cell whose value is being fixed is highlighted in red

- Cells with a single possible value are selected in the order in which 
this fact was discovered - hence the 7 in the second row being the 
first to be fixed (only possible location for 7 in its block)
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- A square which is about to have its set of possible values reduced is 
highlighted in purple and then on the next step is reduced to new 
value.

D. Actually, this process is not totally sufficient

Demo: Click solve - note how solution is stuck. (This was actually a 
fairly challenging puzzle).

1. This puzzle can be solved by noting another constraint.  In the 
middle block, the only place where an 8 can occur is in the top row.  
Hence, one of these two squares will eventually be an 8 - in which 
case the 8 in the middle-right block top row is not actually 
possible, forcing this square to be a 4.

2. Manually enter and show how puzzle can now proceed to solution.

3. This sort of constraint could also be incorporated programatically - 
but I didn’t choose to do so in this program.

III.Constraint Propagation in Vision

A. One could argue that the Sudoku puzzle is still something of a “toy 
problem”.  So let’s look at another example of constraint propagation - 
this one seeming to reflect something that actually occurs as a part of 
human vision.

B. Consider the following line drawing: (PROJECT)
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1. Is point “N” closer or farther than point “I”?

ASK

Be sure to get both possible answers

2. Now consider a more complete drawing of which this was a part.  

PROJECT

A

B C

D

EF

G

H I

JKL

M
N

a) Now, the correct answer should be clear.

b) However, if you focus your attention on the portion we looked 
at  earlier alone, does N seem to leap out of the page at you?  

ASK 

What’s going on?

ASK

3. It appears that our visual system is particularly sensitive to the 
presence of edges. 

Examples?

ASK
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4. One thing that is often done in computer vision is to convert raw data 
to a line drawing.  There is actually a fairly straight-forward way to do 
this computationally, which seems (based on experiments done on 
frogs) to be similar to what animal eyes actually do.

DEMO: Image Editor project with parrots drawing - convert to edges

5. To interpret a line drawing, it is necessary to interpret the 
individual lines

C. One of the earliest uses of constraint propagation in AI was in 
conjunction with interpretation of line drawings.  We will consider a 
simplified version of this procedure here.  (Even the full procedure as 
originally developed by David Waltz has limitations, which 
subsequent work has addressed).

1. Lines occur in images for a number of reasons

a) Actual physical edges

(1)A boundary between an object and the background

(2)A convex edge in the interior of the object

(3)A concave edge in the interior of the object

b) Pseudo-edges

(1)Crack

(2)Shadows

c) Markings on the surface of the object - which we may choose to 
treat as real edges

2. To interpret a line drawing, we need to interpret the lines.  For 
simplicity, the example we will develop here will consider only 
lines corresponding to actual physical edges.  Our ultimate goal is 
to interpret each line as corresponding to one of the four kinds of 
physical edge.
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+ -

Boundary edge - object is to           Convex edge      Concave edge
right when following arrow

Example: The two ways of “seeing” the relationship between 
points N and I  correspond to two ways of interpreting the edges

I

N
+

+

+

	



	



I

N
-

-

-

The “correct” interpretation (the one on the right) is actually 
determined by constraint propagated from the surrounding context.

3. Waltz’s procedure turns the problem of labeling lines into a 
problem of labeling junctions.  It relies on two physical constraints 
to make the problem tractable:

a) Though many combinations of line labelings at a junction are 
are  combinatorially possible, only certain combinations are 
physically possible.

PROJECT: Nilsson Figure 6.16.  This gives a set of of junction 
labelings  in a restricted environment where we impose the 
following limitations:
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(1)No shadows or cracks are allowed; only real edges.  (Thus, 
only the four line labels we mentioned earlier are needed.)

(2)All junctions are formed from at most three faces.  (The 
pyramids of Egypt are ruled out.)

(3)The viewing angle is not singular; what we see would not be 
drastically altered by a slight movement of position.

(These classes of junctions are called, respectively, V’s, W’s, 
Y’s, and T’s)

(4)Note that real vision systems must deal with a much more 
complex set  of conditions, including shadows, cracks, and 
junctions formed from more than three faces.  The set of 
possible labelings of junctions would be very hard to 
enumerate by hand, but has been done by computation.

b) Each line connects two junctions.  The labelings at the two 
junctions must both assign the same label to the line.

4. The problem of finding a set of consistent line labelings could be 
viewed as a search problem, with a particular assignment of labels 
being a state.  In this case, the goal would be to find a physically 
consistent set.  However, the size of the search space would be very 
large - e.g. with just the 4 labels and 10 lines, we would have 4^10 
(> 1 million) states to consider; and with 20 lines, we would have 
over a trillion.  Waltz’s procedure dramatically reduces the size of 
the search space by using constraint propagation, as we did in the 
Sudoku example.   (In fact, when I first started solving Sudoku’s I 
recognized that the way to approach a solution was to use this 
technique that I already knew about!)

a) At any given time in the procedure, each junction has associated 
with it a set of possible labelings.  (Ultimately, the set 
associated with each junction will become a singleton.)
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b) Initially, we label the outside edges as boundaries.  Then we 
associate with a junction the set of all possible labelings for 
junctions of that type (L, fork, arrow etc.) which are consistent 
with these labeling.  (In some cases, this will mean that all 
possibilities for a junction are available.)

c) Constraints propagated from neighbors allow us to eliminate 
certain elements from the set of possible labels for the junction,  
until we are (hopefully) eventually left with just one.  
Constraint is propagated as follows: whenever we change the 
set of labelings on a junction (even just by making it smaller), 
we examine each of its  neighbors.

(1)Let J be a junction we have just learned something new about

(2)Let E be an edge connecting it to a neighbor (N).

(3)The set of labels for J determines a set of possible labelings for E.  
For example, if none of the possible labels for J has E labeled as a 
"+", then "+" is not one of the possible interpretations for E.

(4)We eliminate from N's set of labelings any label which 
requires an interpretation for E not allowed by J's labeling.

(5)Eventually, the set of possible labelings for J or N determines 
a unique label for E.  At this point, we mark E.

d) Whenever the set of labelings for a junction's edges eliminates 
all possibilities for the junction save one, we can label the 
junction.
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D. Example - labeling the figure we used earlier.  

PROJECT AGAIN

1. First, label all outside boundaries with an arrow going clockwise 
starting with A.

2. The W’s  at B, D, and F must be labeled with +'s on their third barb.

3. The Y at G therefore becomes all +'s, which is one of the  
possibilities for a Y.

PROJECT

A

B C

D

EF

G

H I

JKL

M
N+

+
+

4. This finishes the outer edges.  We now must plunge into the 
interior. 

a) If we start with H, all 6 “V” labelings are initially possible.
+

+

-

-
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b) Likewise, for I all 3 “W” labelings are initially possible, since 
each is consistent with some labeling for H.

+ +

-

- -

+

+

c) At J, we can eliminate 2 of the 6 “V” labelings as inconsistent 
with the set of labelings for I.  (There is no labeling for I that 
has a boundary edge going from J to I.)  That leaves the 
following  possibilities:

+ -

-

d) At K all 4 “T's” are possible

- +
  

e) But now, we can propagate some constraint back to J.  The two 
“V’s” having a boundary from J to K are out, as is the “V” 
having the J-K  edge a -, since K constrains the J K edge to be a 
K to J boundary. Thus, the labeling for J has been fixed as:

+

f) Further, the fixing of J's labeling forces the labeling for I,  
which in turn forces the labeling for H, leading to:

PROJECT
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A

B C

D

EF

G

H I

JKL

M
N+

+
+

+

+
-

g) At L, only two labelings are possible consistent with K:

+

h) At M, all four "T"'s are initially possible:

-+

i) However, since all of M's labelings have ML a boundary edge, 
this eliminates one possibility for L, forcing the remaining one 
as the only possibility.

j) Finally, at N only two labelings are consistent with I:
- -

-

-

 

15



k) This, in turn, reduces possible labelings of K and M to two 
each. 

5. At this point, our labeling looks like this

PROJECT

A

B C

D

EF

G

H I

JKL

M
N+

+
+

+

+
-

Both concave or 
both boundary

We can go no further.  The Waltz procedure has uncovered a 
genuine a genuine ambiguity - is the center area (bounded by 
K,L,M,N) a solid bottom or a hole?  Further data would be needed 
to settle this. (E.g. if this area were a different color or shading 
from the  background, it’s probably a bottom; if the same as the 
background, probably a hole. 

To see this, consider these two different versions of our drawing 
with shading:

PROJECT
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E. Exercise to do in class: 

Waltz’s procedure problem

 HANDOUT with possible labelings and figure to label.
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