
Programming Assignment: Programming with Sockets
Get Server and client due: Feb 9th
Complete server and client (both Get and Put) due: Feb 18th
In this assignment you will be asked to implement an HTTP client and server running a
pared down version of HTTP/1.1. You will have to extend the client and server to make
use of some of the application level headers we have studied in class. This project can be
completed in either C/C++, Java, or other languages you prefer. (However, it must run on
Moses.)

What to Turn In

When you hand in your programming assignment, you should include:

• A source listing(s) containing in-line documentation. Uncommented code will be
penalized.

• A separate (typed) document of a page or so describing the overall program
design, a verbal description of ``how it works'', and design tradeoffs considered
and made. Also describe possible improvements and extensions to your program
(and sketch how they might be made).

• A separate description of the test cases you ran on your program to convince
yourself (and me) that it is indeed correct, and execution traces showing these test
being run. Also describe any cases for which your program is known not to work
correctly. The system capabilities which your test cases should demonstrate are
described below.

• A detailed description of how to build the program and execute the program.
• Place all of your documents/source files in a folder called name_project1 and drop

into class dropbox – cps372dropbox

The HTTP Client

Your client should take command line arguments specifying a server name or IP address,
the port on which to contact the server, the method you use, and the path of the requested
object on the server. You are going to implement two methods of HTTP: GET and PUT.

• GET
The format of the command line is

myclient host port_number GET filename

The basic client action should proceed as follows:

1. Connect to the server via a connection-orieted socket.
2. Submit a valid HTTP/1.0 GET request for the supplied URL.

GET /index.html HTTP/1.0

(end with extra CR/LF)

3. Read (from the socket) the server's response and display it as program
output.

Once you have this part of the client working, you should demonstrate it with the
following two test cases:

4. Use it to get a file of your choosing from a "real" web server on the
internet. For example,

myclient www.cnn.com 80 GET index.html

5. Use it to get a file from your own server program. For example, your
server is running on pc1.cs.uml.edu, port number 5678.

myclient pc1.cs.uml.edu 5678 GET index.html

This command would result in an HTTP GET request to pc1.cs.uml.edu
for index.html on port 5678, and get the file index.html back to the client.

• PUT

The format of the command line is

myclient host port_number PUT filename

The basic client action should proceed as follows:

1. Connect to the server via a connection-orieted socket.
2. Submit a PUT request for the supplied file:

PUT filename
extra CR/LF.

(Once your server program receives such a request, it should expect to
receive the file and save it to disk.)

3. Send the file to the server.
4. Wait for server's reply.

Once you have this part of the client working, you should test it with your own
server: send out a file to your server, the server should save the file and sends
back a reponse.

The HTTP Server

Your server should take command line arguments specifying a port number. For example,
myserver 5678
The basic server action should proceed as follows

1. Initialize the server.
2. Wait for a client connection on the port number specified by command line

argument.
3. When a client connection is accepted, read the HTTP request.
4. Construct a valid HTTP response including status line, any headers you feel are

appropriate, and, of course, the requested file in the response body.

For GET , if the server receives the "GET index.html HTTP/1.0" request, it sends
out "200 OK" to the client, followed by the file index.html. If the requested file
doesn't exist, the server sends out "404 Not Found" response to the client.

For PUT , if the server receives the "PUT test.txt" request, it will save the file as
test.txt. If the received file from client is successfully created, the server sends
back a "200 OK File Created" response to the client.

5. Close the client connection and loop back to wait for the next client connection to
arrive.

Notice that your server will be structured around an infinite loop. That means that you
must interrupt your server with a termination signal to stop it. Make sure your server code
shuts down gracefully when terminated. That means closing any open sockets, freeing
allocated memory, etc.

Once you get your server working, demonstrate it with the following two test cases:
First, use an ordinary browser such as Netscape or Internet Explorer to get a html file
from your server. For example, your server is running at host pc1.cs.uml.edu on port
number 5678, and there is a file index.html in the current directory. In the URL box of
the web browser, type in pc1.cs.uml.edu:5678/index.html, the browser should fetch the
file and display it.
Second, use your own client to get a file.
Third, use your own client to put a file.

Programming the assignment in JAVA

• Recall from our discussions in class that Java encapsulates the concept of a client-
side connection-oriented (TCP) socket with the class, Socket. Details about the
socket class can be found at
http://java.sun.com/products/jdk/1.1/docs/api/java.net.Socket.html

• Java encapsulates the concept of a server-side connection-oriented socket with the
class, ServerSocket. Details about this class can be found at

http://java.sun.com/products/jdk/1.1/docs/api/java.net.ServerSocket.html. You'll
need to use the accept() and close(0) methods of this class, which are also
document at this URL.

• If you're interested in a quick Java tutorial targeted specifically at socket
programming, check out "Socket Programming in Java: a tutorial," by Q.
Mahmoud, Javaworld, Dec. 1996, http://www.javaworld.com/javaworld/jw-12-
1996/jw-12-sockets_p.html. Sun's socket tutorial is at
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html.

Programming the assignment in C

If you choose to write your programs in C, you'll need to master the C system calls
needed for socket programming. These include socket(), bind(), listen(), accept(),
connect(), and close(). For an audio/html tutorial of socket programming in C, see "Unix
Network Programming," by Jim Kurose at http://manic.cs.umass.edu/courses2.html.
(You need only sessions 2, 3 and 4 to do this assignment). For a quick text-only tutorial
of socket programming specifically under Linux, see
http://sunsite.net.edu.cn/tutorials/linux/rhl54.htm. You are welcome to do this assignment
using the WINSOCK API, rather than the Unix API, if you have a Windows machine and
a C compiler.

Programming notes

Here are a few tips/thoughts to help you with the assignment:

• You must chose a server port number great that 1023 (to be safe, choose a server
port number larger than 5000).

• I would strongly suggest that everyone begin by writing a client and getting its
test cases to work. Then write a sequential server and test it with your client.
Finally, write a concurrent server, if you want to do the extra credit portion of the
assignment.

• In writing your code, make sure to check for an error return from your system
calls or method invocations, and display an appropriate message. In Java, this
means using IOException(); in C this means checking and handling error return
codes from your system calls. See the documentation noted above.

• Most of you will be running both the client and server on the same machine (e.g.,
by starting up the server and running it in the background, and then starting the
client) under Unix. Recall the use of the ampersand to start a process in the
background. If you need to kill your server after you have started it, you can use
the UNIX kill command. Use the UNIX ps command to find the process id of
your server

• Make sure you close every socket that you use in your program. If you abort your
program, the socket may still hang around and the next time you try and bind a
new socket to the port ID you previously used (but never closed), you may get an
error. Also, please be aware that port ID's, when bound to sockets, are system-
wide values and thus other students may be using the port number you are trying

to use. On UNIX systems, you can run the command "netstat" to see which port
numbers are currently assigned.

Extra Credit: Concurrent Server [+ 10%] (Awarded for one of the two due
dates)

Rewrite your server to be a concurrent server - that is a server that waits on the
welcoming socket and then creates a new thread or process to handle the incoming
request. If you are doing the assignment in C, you'll need to learn about the fork() system
call; see the material on slides 53 and 54 in
the Unix network Programming tutorial at http://manic.cs.umass.edu/courses2.html. If
you're doing the assignment in Java, see the section "Supporting Multiple Clients" in
Sun's socket programming tutorial,
http://java.sun.com/docs/books/tutorial/networking/sockets/clientServer.html.

