
CPS211 Lecture: Cohesion and Coupling; the MVC Paradigm

Last revised July 24, 2008
Objectives:

1. To introduce cohesion and coupling as criteria for evaluating designs
2. To introduce the MVC architectural paradigm 

 Materials: 

1. Cohesion/coupling exercises worksheet

I. Introduction

A. As you are doing design, it is important to have criteria in mind for 
evaluating the quality of the design. 

B. Today, we look at two such criteria: cohesion and coupling.

1. In a good design, the various component parts (e.g. the classes) 
have high cohesion.

2. In a good design, the various component parts (e.g. the classes) 
have low coupling 

C. We will also look at an architectural design pattern called Model 
View Controller, which is appropriate for systems like our 
videostore.  When it is used for such systems, it promotes cohesion 
and minimizes unnecessary coupling

II. Cohesion

A. We say that an entity is cohesive if it performs a single, well-defined task, 
and everything about it is essential to the performance of that task.  

(Note that we have defined cohesion in terms of an entity.   The cohesion 
test can be applied to classes (as is our primary focus here); but it can also 
be applied on a lower level to the individual methods of a class (each of 
which should be cohesive) or, on a higher level, to a package of related 
classes or an overall system or subsystem.)

1. An important goal in design is to try to ensure that each entity we 
design (class, method, system) exhibits the highest possible level of 
cohesion.
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2. A good test for cohesion is “can I describe the purpose of this entity 
(class, method, etc.) in a short statement without using words like 
‘and’?”  (This is one of the benefits of writing a prologue comment for 
a class or method before you write the code - it helps you to think 
about whether what you are about to produce is truly cohesive.)

B. Over the years, software engineers have identified various sorts of possible 
cohesion, which can be ranked from most cohesive (good) to least 
cohesive (bad).  
Unfortunately, different writers list different of types of cohesion, and use 
different names.  Of course, the ultimate task is not to determine what 
kind of cohesion a given entity exhibits, but rather to produce the most 
cohesive entity possible.
Here is one approach:

1. Desirable sorts of cohesion

a) Functional cohesion - the entity performs a single, well-defined task, 
without side effects.  [ A well-designed method will exhibit this. ]

b) Informational cohesion - the entity represents a cohesive body of 
data and a set of independent operations on that body of data.  [ A 
well-designed class will exhibit this. ]

2. Less desirable sorts of cohesion - listed in decreasing order of 
desirability

a) Communicational, Sequential, Procedureal cohesion - the entity is 
responsible for a series of tasks which must be performed in some 
order.  (With fine distinctions between communicational, sequential, 
and procedural that we will omit here)

b) Temporal cohesion - the entity is responsible for a set of tasks which 
must be performed at the same general time (e.g. initialization or 
cleanup)

c) Logical - the entity is responsible for a set of related tasks, one of 
which is selected by the caller in each case.
In a case like this, it may be better to have several kinds of entity - 
perhaps using polymorphism.

d) Utility cohesion  - the entity is responsible for a set of related tasks 
which have no stronger form of cohesion.
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Example: the java.util package and the java.Math class - the fact that 
a level of cohesion is less desirable does not mean it can always be 
avoided!

3. Undesirable: coincidental cohesion - the entity is responsible for a set of 
tasks which have no good reason (other than, perhaps, convenience) 
for being together.

C. For any entity that has less than the highest possible cohesion, it is 
worthwhile considering whether its cohesion can be improved.

1. Sometimes, this is a simple rethinking of its purpose statement.  If the 
purpose contains “ands”, it may be possible to construct a statement 
that implicitly includes all the items and nothing else.

Example: Consider a method that enrolls a student in the course.  Its 
purpose statement might read: “Add student to course and add course 
to student”.  A simple rephrasing might be “Enroll student in course” 
that implicitly includes both of these, and improves cohesion..

2. Often, though, when an entity has low cohesion, it may be possible to 
refactor the design to produce higher cohesion by splitting the low 
cohesion entity into two or more entities with higher cohesion.

a) For example, some entity may  be responsible for two different 
kinds of tasks, but can be refactored into two associated entities, 
each of which is responsible for one of the kinds of tasks.

b) One place where this often occurs arises when you have a class that 
represents some entity that can be displayed and perhaps edited in a 
GUI.   In this case, it may make sense to refactor the design into a 
class that has the responsibilities associated with representation and 
another related class that has the GUI responsibilities.

Example:  One might create a Customer class in the video store 
project that is responsible for representing a customer (including 
keeping track of the customers rentals, late fees, and reservations) 
and also for GUI display/editing of the customer.  It is probably 
better to create two classes:
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Customer Customer
Editor

1 *

Rental Late Fee Reservation

1
1

1

* * *

(Something like this may be worthwhile in iteration 2, for adding a 
new customer and likewise for title.)

c) Another example of this occurs in the videostore “gift” GUI which 
has a RentDetailsCard plus a RentDetailsCard (and may have a  
Rental class, or may just represent in Customer and 
RentableItem).

D. Next class, we will discuss some handout exercises 

Give out worksheet

III. Coupling

A. Coupling is a measure of the extent to which an entity depends on other 
entities.  We will discuss coupling in terms of classes today, but (as with 
cohesion) coupling can also be considered at other levels.

B. A system has low coupling just when the various component parts have 
minimal dependency on each other.  Of course, some coupling is essential 
- else you have a society of hermits.  But what we want is to eliminate 
unncessary coupling.  This makes modification/maintenance of the system 
much easier.

C. Recall that a class A depends on another class B if A:

1. A has an association with that B (with navigability toward B if 
unidirectional)..

2. Generalizes or realizes B
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3. Has a dependency on B - through methods that

a) Have local variables of type B

b) Have parameters of type B

c) Have a return value of type B.

4. Dependencies have two important consequences:

a) If a class A depends on a class B, and we want to build a system 
that reuses class A, then we must also include class B in the system, 
whether or not it would otherwise be needed.

b) If a class A depends on a class B, and class B is modified, class A 
may need to change as well. 

5. While dependencies are unavoidable (and indeed often necessary), what 
we want to do is to minimize the likelihood of casading modification 
occurring, which depends on the strength of the coupling between two 
classes.

D. While it is classes that are coupled to one another, it is typically in the 
methods of the dependent class that one can take measures to reduce (or 
even sometimes eliminate) the coupling, as we shall see below.

E. As was the case with cohesion, software engineers have developed some 
categories of coupling.  Here is one approach (ranked from most lowest - 
therefore most desirable - to highest)

1. Data coupling occurs when a method of class A has parameters (or 
local variables or a return value) of class B and uses the class B object 
as a single, atomic piece of data.  This ususally can’t be improved.

2. Stamp coupling occurs when a method of class A has parameters (or 
local variables or a return value) of class B and depends on the 
structure of the B object (i.e. uses part of it).

a) Example:
Suppose we have a class Person with a method called 
getBirthDate().  Suppose we now want to create another class 
DriversLicense with a method called isJuniorOperator() 
(which returns true if an individual is under 18).  One way to 
structure this would be as follows:
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boolean isJuniorOperator(Person p)
{

Date birthDate = p.getBirthDate();
// return true if birthDate is less than 18 years
// before today’s date

}
However, if we changed the getBirthDate() method of Person 
in some way (e.g. renamed it or changed the way we stored 
information about the driver), we might also have to change the 
isJuniorOperator() method of DriversLicense.  

b) Often, stamp coupling can be reduced by rethinking the parameters 
of a method.  For example, in this case we could design the method 
to just take the person’s birthdate (all it needs), rather than the 
whole person as a parameter.
boolean isJuniorOperator(Date birthDate)
{

// return true if birthDate is less than 18 years
// before today’s date

}
Now we rely on the caller to extract the necessary birth date 
information from the Person object, reducing the coupling between 
DriversLicense and Person, since we no longer need know that 
a Person explicitly stores a birth date or provides a 
getBirthDate() method to get it.  The effect of this is actually to 
exliminate the coupling between DriversLicense and Person in 
this case.

3. Control coupling arises when a method does different things depending 
on the value of a “flag” parameter.

a) Example: in your video store, you might eventually create a method 
like this:
updateCustomer(int whatKind, Customer customer)
where whatKind takes on the values ADD,  EDIT or DELETE, and 
customer is used for EDIT, but is not used at all for ADD, and only 
the id is used for DELETE. 

b)  Often, control coupling can be reduced by replacing the method 
with multiple methods - e.g. (in the example):
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addCustomer() ...
editCustomer(Customer customer) ...
deleteCustomer(String customerId) ...
(In this particular example, this also has the effect of producing 
cohesion, and eliminates stamp coupling in one case)

4. Common coupling arises when a method depends on a global variable.   
This is less common in OO systems, but can still occur.

a) Example: In the video store problem, the rental rate can be set by 
management.  One might address this by including a variable 
rentalRate in the the class StoreDatabase - in which case code 
like the following might occur:
amountDue += StoreDatabase.rentalRate;
This is undesirable, because any change to the variable (e.g. giving it 
a different name or changing its type can “break” other classes - 
sometimes in startling ways (like charging someone $3000 for a 
rental, because the representation for rentalRate was changed 
from a float representing a dollar amount to an int representing a 
number of cents!)

b) Than be fixed by using encapsulation, with a method like 
getRentalRate().  Where should this method occur?
ASK
(1) It is tempting to put it in StoreDatabase. 
(2) However, since movies and games have different rental rates, it 

would be necessary to include some sort of specification as to 
which kind of item is being rented (a form of control coupling), 
Lower coupling results from putting such a method in Movie 
and Game, (and as an abstract method in Title), with each 
calling either getMovieRentalRate() or 
getGameRentalRate()  in StoreDatabase as appropriate. 

5. Content coupling occurs when a module surreptitiously depends on the 
inner workings of another module.  
(It turns out its almost impossible to illustrate something this bad using 
java!)

F. Next class, we will also discuss some exercises in the worksheet given out 
earlier relative to coupling.
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[ CLASS SESSION BREAK ]

IV. Discussion of Cohesion and Coupling Worksheet

A. Discuss cohesion matching problem..
My answers: 
1. F - the only thing these operations have in common is the fact that 

they’re done at the same time.

2. A - this is a good example of a module that performs a single, clearly-
defined task

3. D - the cohesion arises from the need to perform steps in a certain 
order.

4. B - this is a good example of a cohesive class

5. I - the lack of cohesion here is about as bad as it can get!

6. H - Probably it would be better to have separate drawCircle() etc. 
methods - which would also make it easier to extend the functionality - 
or to create a class Shape with method draw() and subclasses for 
different shapes that define draw() appropriately,

B. Discuss coupling matching problem 
My answers: 
1. D (The java equivalent of the global variable found in some 

programming languages is a static variable of some class)

2. B (because we pass in the whole person object, not just the one piece 
of information we need - hence the calculateAge method needs to 
know about the interface of Person - e.g. that it has a method to access 
the individual’s birth date (getBirthDate() or the like.  This coupling 
would not occur if the parameter to the method were the birth date - 
then it could be applied to any birth date, not just the birth date 
contained in a Person object.)

3. E (It’s not actually possible to construct something this bad in Java!)

4. A - there is only one parameter, and it’s a simple data item

5. C - one of the parameters is a flag that controls whether the method 
prints today’s date.
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V. The MVC Design Pattern

A. The term system architecture refers to the overall, high-level structure of a 
system.   

1. Just as there are certain patterns of building architecture, so there are 
different architectural patterns.

Example: in the world of buildings, there are architectural patterns such 
as “house”, “school”, “factory”, etc..  Though buildings vary widely, 
it is generally possible to tell that a given building is, say, a house.

2. In the world of software, there are also architectural patterns.  Just as 
the architecture of a building is determined by what it is going to be 
used for, so the architecture of a piece of software is determined by 
what its purpose is.

B. One architectural pattern that is used extensively is the Model-View-
Controller (MVC) architecture.   Many GUI applications follow this pattern 
- often at multiple levels

Model

ViewController

interacts
with

informs of actions

updates

notifies
   about
      changes

1. We introduce it here for two reasons:

a) When used in appropriate places, MVC can help produce a cohesive 
design. 

(1) Classes in the model serve to represent entities that the system 
manipulates.  Each class has, as its single task, representing some 
one kind of entity.
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(2) Classes in the view allow users to interact various aspects of the 
system - e.g. a specific entity, or a specific body of information, 
displaying information and receiving user requests.

(a) When something in the model changes, it notifies the view

(b) When an actor requests an operation in the view, it notifies 
the controller

(3) Classes in the controller represent various tasks (use cases) that 
the system performs, by updating the view in response to user 
requests

b) Notice that each part of the system focusses on one type of thing:

(1) The model focusses on representing information.

(2) The view focusses on displaying information.

(3) The controller focusses on carrying out user commands on 
information.

c) The code you will be given soon for the video store is based on this 
pattern, and actually has three packages called model, view, and 
controller.  (However, the “notifies about changes” dependency is 
not realized, because it would require use of a design pattern you 
don’t know about yet and, in any case, is not really applicable here)

2. Can you think of an example of a system (other than the video store, 
of course) that uses this architecture?
ASK

The AddressBook System - project class diagram

a) What classes constitute the model? 
ASK
AddressBook, Person, FileSystem

b) What classes constitute the view?
ASK
AddressBookGUI, MultiInputPane

c) What classes constitute the controller?
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ASK
AddressBookController (also AddressBookApplication)

3. This paradigm is also used in the course registration system that you 
will write code for in Labs 6-7 (based on a class diagram you 
developed in Lab 4).
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