
1

Slide 3-1

Operating System
Organization

Slide 3-2Purpose of an OS

The Abstractions

Create the Abstractions

Coordinate Use
of the AbstractionsProcesses

2

Slide 3-3OS Requirements

• Provide resource abstractions
– Process abstraction of CPU/memory use

• Address space
• Thread abstraction of CPU within address space

– Resource abstraction
• “Anything a process can request that can block the

process if it is unavailable”
• NT uses “object abstraction” to reference resources

– File abstraction of secondary storage use

Slide 3-4

• Device Management
• Process, thread, and resource management
• Memory Management
• File Management

OS Requirements

3

Slide 3-5Device Management

Device-Independent
Part

Device-Dependent
Part

Device …Device Device

Device-Dependent
Part

Device-Dependent
Part

Slide 3-6Virtual Device Drivers

used in virtualization environments
emulate a piece of hardware - illusion of accessing real hardware

How does it work?
Attempts by the guest operating system
 to access the hardware are routed to the virtual device
driver in the host operating system as function calls

4

Slide 3-7Process, Thread, and Resource
Management

…
Processor

Primary
Memory

Abstract
Resources

Multiprogramming

Thread
Abstraction

Process
Abstraction Generic

Resource
Manager

Other

Process, thread, and resource manager

Slide 3-8Memory Management

Primary
Memory

Process
Manager

Block
Allocation

Virtual
Memory

Isolation &
Sharing

Storage
Devices

5

Slide 3-9File Management

Abstraction of storage devices
Interacts with device and memory managers

Modern OS: file system can be distributed across a
network of machines

Slide 3-10

OS Design Constraints

• Performance
• Protection and security
• Correctness
• Maintainability
• Commercial factors
• Standards and open systems

6

Slide 3-11Two software design issues
Performance - OS must be efficient
•efficient use of resources (CPU time and memory space)
•Maximize the availability of resources
Exclusive use of resources - OS must provide resource
isolation

OS Mechanisms to Handle Performance and Exclusive
use of resources -
•Processor Modes - hardware mode bit is used to
distinguish between OS and user instructions
•Kernels - most critical part of OS placed in kernel
(trusted software module)
•Method of invoking system service - calling a system
function or sending a message to a system process

Slide 3-12Performance
• The OS is an overhead function ⇒ should

not use too much of machine’s resources
• Minimum functionality is to implement

abstractions
• Additional function must be traded off

against performance
– DOS: one process
– UNIX: low level file system

7

Slide 3-13Exclusive Access to a Resource

• Exclusive control of a resource - must be guaranteed
• OS provides mechanism to isolate processes
• OS must also provide ability for processes to share

Security Policy - the machine specific strategy for
managing access to resources

Trusted software - carefully constructed and part of OS (us)
 Kernel
Untrusted software - temporary and unknown (them)
 Apps, system software, and OS extensions

Slide 3-14Exclusive Access to a Resource

Process A

Supervisor
Program

A’s Protected
Object

Processor

Process B

8

Slide 3-15Protection & Security

• Multiprogramming ⇒ resource sharing
• Therefore, need software-controlled

resource isolation
• Security policy: Sharing strategy chosen by

computer’s owner
• Protection mechanism: Tool to implement a

family of security policies

Slide 3-16Processor Modes

• Mode bit: Supervisor or User mode
• Supervisor mode

– Can execute all machine instructions
– Can reference all memory locations

• User mode
– Can only execute a subset of instructions
– Can only reference a subset of memory

locations

9

Slide 3-17Kernels

• The part of the OS critical to correct
operation (trusted software)

• Executes in supervisor mode
• The trap instruction is used to switch from

user to supervisor mode, entering the OS

Slide 3-18Supervisor and User Memory

User
Space

Supervisor
Space

User
Process

Supervisor
Process

10

Slide 3-19Procedure Call and Message Passing
Operating Systems

call(…);

trap

return;

send(…, A, …);
receive(…, B, …);

receive(…A, …);
 …
send(…, B, …);

send/receive

Slide 3-20System Call Using the trap Instruction

…
fork();
…

fork() {
…
trap N_SYS_FORK()
…
}

sys_fork()

sys_fork() {
/* system function */
 …
 return;
}

KernelTrap Table

11

Slide 3-21A Thread Performing a System Call

User Space Kernel Space

fork();

sys_fork() {

}

Thread

Slide 3-22Correctness & Maintainability

• Security depends on correct operation of
software ⇒ trusted vs untrusted software

• Maintainability relates to ability of software
to be changed

• If either is sufficiently important, can limit
the function of the OS
– Guiding a manned spaceship
– Managing a nuclear reactor

12

Slide 3-23Basic Operating System
Organization

Processor(s) Main Memory Devices

Process, Thread &
Resource Manager

Memory
Manager

 Device
Manager

 File
Manager

Slide 3-24Basic Operating System
Organization

Dilemma - modularize vs. “flater” design

Modularize
Four separate functional units
Easier to maintain and update

“Flater”
performance important
UNIX - four parts combined into one

13

Slide 3-25Basic Operating System
Organization

Processor(s) Main Memory Devices

Process, Thread &
Resource Manager

Memory
Manager

 Device
Manager

 File
Manager

Slide 3-26MicroKernel

MicroKernel - only essential “trusted” code
thread scheduling
hardware device management
fundamental protection mechanisms
other basic functions

remainder of the 4 - into user code
Must use system call to microkernel

14

Slide 3-27Modern OS Kernels

Unix - first to support multiprogramming and
networking
Windows version - more widely used

Slide 3-28

Libraries Commands

Device Driver

The UNIX Architecture
Interactive User

Application
Programs

OS System Call Interface

Device Driver

Device Driver

D
riv

er
 In

te
rf

ac
e

…
Monolithic Kernel Module
•Process Management
•Memory Management
•File Management
•Device Mgmt Infrastructure

Trap Table

…

15

Slide 3-29Windows NT Organization

Processor(s) Main Memory Devices

Libraries

Process
Process

Process

Subsystem
User

Supervisor

Subsystem Subsystem

Hardware Abstraction Layer
NT Kernel

NT Executive
I/O Subsystem

T
T

T
T

T
T T T

T

Process Management
Memory Management
File Management
Device Mgmt Infrastructure

Slide 3-30NT Design Goals

Extensibility
configured for workstation or server
OS uses the same source code in both
extensible nucleus software model

like microkernel
Portability

Reliability and Security

16

Slide 3-31Windows NT Organization

Processor(s) Main Memory Devices

Libraries

Process
Process

Process

Subsystem
User

Supervisor

Subsystem Subsystem

Hardware Abstraction Layer
NT Kernel

NT Executive
I/O Subsystem

T
T

T
T

T
T T T

T

Process Management
Memory Management
File Management
Device Mgmt Infrastructure

Slide 3-32

DOS -- Resource Abstraction Only

Processor(s) Main Memory Devices

Program

Program

Program

OS Services

Libraries

ROM Routines

17

Slide 3-33

Abstraction & Sharing

Processor(s) Main Memory Devices

Libraries

ROM Routines

Program
State

Process

Program
State

Process

Program
State

Process

OS Services
• Abstraction
• Manage sharing

Slide 3-34

Microkernel Organization

Device Drivers
Microkernel

Processor(s) Main Memory Devices

Libraries

Process

Process

Process

Server Server Server

User

Supervisor

18

Slide 3-35Monitoring the Kernel

Processor(s) Main Memory Devices

Libraries

Process
Process

Process

Subsystem Subsystem Subsystem

Hardware Abstraction Layer
NT Kernel

NT Executive
I/O Subsystem

T
T

T
T

T
T T T

TTask
Manager

pview

pstat

Supervisor

User

