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Computer Systems II
Gordon College

Operating System Overview

Slide 1-2Class Intro

• Operating System Class
• Two Directions:

– Practical
• Linux+ Guide to Linux Certification and Lab Manual
• Lab Experience

– Theoretical
• Operating Systems (3rd Edition Gary Nutt)
• Lecture and Projects
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Slide 1-3Why Study Operating Systems?

• Understand the model of operation
– Easier to see how to use the system
– Enables you to write efficient code

• Learn to design an OS
• Even so, OS is pure overhead of real work
• Application programs have the real value to

person who buys the computer
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Slide 1-5System Software

•Independent of individual applications, but
common to all of them

•Examples
–C library functions

–A window system

–A database management system

–Resource management functions

–The OS

Slide 1-6
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Slide 1-7Application Software, System Software, and the OS
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Slide 1-8The OS as Resource Manager
•Process: An executing program

•Resource:  Anything that is needed for a
process to run

–Memory

–Space on a disk

–The CPU

•“An OS creates resource abstractions”

•“An OS manages resource sharing”
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Slide 1-9Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

write(char *block, int len, int device,
int track, int sector) {

   ...
  load(block, length, device);
  seek(device, 236);
  out(device, 9);
   ...
}

write(char *block, int len, int device,int addr);

fprintf(fileID, “%d”, datum);

Slide 1-10Disk Abstractions

load(…);
seek(…);
out(…);

void write() {
  load(…);
  seek(…)
  out(…)
}

int fprintf(…) {
  ...
  write(…)
  …
}
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Slide 1-11Abstract Resources
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Slide 1-13Resource Sharing

• Space- vs time-multiplexed sharing
• To control sharing, must be able to isolate

resources
• OS usually provides mechanism to isolate,

then selectively allows sharing
– How to isolate resources
– How to be sure that sharing is acceptable

• Concurrency

Slide 1-14The OS as a Conductor

The OS coordinates the sharing and use of all the
components in the computer
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Slide 1-15Multiprogramming
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Multiprogramming(2)
• Technique for sharing the CPU among

runnable processes
– Process may be blocked on I/O
– Process may be blocked waiting for other

resource, including the CPU
• While one process is blocked, another might

be able to run
• Multiprogramming OS accomplishes CPU

sharing “automatically” – scheduling
• Reduces time to run all processes
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Slide 1-17How Multiprogramming Works
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Slide 1-18Speeding Up the Car Wash
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Slide 1-19Multiprogramming Performance
Time

Using the processor
I/O operation

0 ti

Pi’s Total Execution Time, ti

(a) Pi’s Use of Machine Resources

Time

P1

P2

Pi

PN

…

…

(a) All Processes’ Use of Machine Resources

Slide 1-20OS Strategies

• Batch processing
• Timesharing
• Personal computer & workstations
• Process control & real-time
• Network
• Distributed
• Small computers
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Slide 1-21Batch Processing
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Slide 1-22Batch Processing(2)

• Uses multiprogramming
• Job (file of OS commands) prepared offline
• Batch of jobs given to OS at one time
• OS processes jobs one-after-the-other
• No human-computer interaction
• OS optimizes resource utilization
• Batch processing (as an option) still used

today
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Slide 1-23A Shell Script Batch File

cc -g -c menu.c
cc -g -o driver driver.c menu.o
driver < test_data > test_out
lpr -PthePrinter test_out
tar cvf driver_test.tar menu.c driver.c test_data test_out
uuencode driver_test.tar driver_test.tar >driver_test.encode
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Timesharing Systems
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Slide 1-25Timesharing Systems(2)

• Uses multiprogramming
• Support interactive computing model

(Illusion of multiple consoles)
• Different scheduling & memory allocation

strategies than batch
• Tends to propagate processes
• Considerable attention to resource isolation

(security & protection)
• Tend to optimize response time

Computer Research Corp ‘67

Slide 1-26Personal Computers

• CPU sharing among one person’s processes
• Power of computing for personal tasks

– Graphics
– Multimedia

• Trend toward very small OS
• OS focus on resource abstraction
• Rapidly evolved to “personal multitasking”

systems
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Slide 1-27Process Control & Real-Time

• Computer is dedicated to a single purpose
• Classic embedded system
• Must respond to external stimuli in fixed

time
• Continuous media popularizing real-time

techniques
• An area of growing interest

Slide 1-28Networks

• LAN (Local Area Network) evolution
• 3Mbps (1975) → 10 Mbps (1980) → 100 Mbps

(1990) → 1 Gbps (2000)
• High speed communication means new way to do

computing
– Shared files
– Shared memory
– Shared procedures/objects
– ???



15

Slide 1-29Distributed OS

• Wave of the future

Distributed OS
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Multiple Computers connected by a Network

Slide 1-30Small Computers

• PDAs, STBs, embedded systems became
commercially significant

• Have an OS, but
– Not general purpose
– Limited hardware resources
– Different kinds of devices

• Touch screen, no keyboard
• Graffiti

– Evolving & leading to new class of Oses
• PalmOS, Pocket PC (WinCE), VxWorks, …
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Slide 1-31Evolution of Modern OS

Modern OS

Batch

Timesharing

PC & Wkstation
Network OS

Real-Time
Memory Mgmt

Protection
Scheduling

Files
Devices

Memory Mgmt

Protection
Scheduling

System software
Human-Computer
     Interface

Client-Server Model

Protocols

Scheduling

Small Computer
Network storage,
Resource management

Slide 1-32Examples of Modern OS

• UNIX variants (e.g. Linux) -- have evolved
since 1970

• Windows NT/2K -- has evolved since 1989
(much more modern than UNIX
– Win2K = WinNT, V5

• Research OSes – still evolving …
• Small computer OSes – still evolving …
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Slide 1-33The Microsoft OS Family
Win32 API

Windows CE
(Pocket PC)

Windows 95/98/Me

Windows NT/2000/XP

Win32 API Subset

Win32 API SubSet

Slide 1-34Summary

An Operating System must be able to:
• provide functionality to apps
• provide abstraction of hardware to users and apps
• provide the sharing of resources to processes
• provide security and protection
• be as transparent as possible
• be as light as possible


