
1

Slide 1-1

Computer Systems II
Gordon College

Operating System Overview

Slide 1-2Class Intro

• Operating System Class
• Two Directions:

– Practical
• Linux+ Guide to Linux Certification and Lab Manual
• Lab Experience

– Theoretical
• Operating Systems (3rd Edition Gary Nutt)
• Lecture and Projects

2

Slide 1-3Why Study Operating Systems?

• Understand the model of operation
– Easier to see how to use the system
– Enables you to write efficient code

• Learn to design an OS
• Even so, OS is pure overhead of real work
• Application programs have the real value to

person who buys the computer

Slide 1-4Perspectives of the Computer

Application
Software

System
Software

Hardware

(a) End User
View

(b) Application
Programmer

View

(c) OS Programmer
View

Application
Software

Application
Software

System
Software

System
Software

Hardware Hardware

cut
save

print
send

malloc()
fork()

open()
read-disk

track-mouse
start-printer

3

Slide 1-5System Software

•Independent of individual applications, but
common to all of them

•Examples
–C library functions

–A window system

–A database management system

–Resource management functions

–The OS

Slide 1-6

Using the System Software

Loader

OSDatabase
Management

System

Window
System

Application
Programmer

Sy
st

em
 S

of
tw

ar
e

Libraries
Compiler

Hardware

Command
Line

Interpreter

LibrariesLibraries

Software API

4

Slide 1-7Application Software, System Software, and the OS

Hardware Resources

Trusted OS
(Abstract Resources)

Software-Hardware Interface

OS Interface

System Software
(More Abstract Resources)

API

Application Software

Human-Computer Interface

Slide 1-8The OS as Resource Manager
•Process: An executing program

•Resource: Anything that is needed for a
process to run

–Memory

–Space on a disk

–The CPU

•“An OS creates resource abstractions”

•“An OS manages resource sharing”

5

Slide 1-9Resource Abstraction
load(block, length, device);
seek(device, 236);
out(device, 9)

write(char *block, int len, int device,
int track, int sector) {

 ...
 load(block, length, device);
 seek(device, 236);
 out(device, 9);
 ...
}

write(char *block, int len, int device,int addr);

fprintf(fileID, “%d”, datum);

Slide 1-10Disk Abstractions

load(…);
seek(…);
out(…);

void write() {
 load(…);
 seek(…)
 out(…)
}

int fprintf(…) {
 ...
 write(…)
 …
}

(a) Direct Control (b) write()
abstraction

(c) fprintf()
abstraction

Application
Programmer

OS Programmer

6

Slide 1-11Abstract Resources

Hardware Resources

OS

OS Resources (OS Interface)

Middleware

Abstract Resources (API)

Application

User Interface

Slide 1-12

Abstract Machines

Program Result

Program Result

Program Result

… …
Idea

Idea

Idea

Physical
Machine

Abstract
Machines

…

7

Slide 1-13Resource Sharing

• Space- vs time-multiplexed sharing
• To control sharing, must be able to isolate

resources
• OS usually provides mechanism to isolate,

then selectively allows sharing
– How to isolate resources
– How to be sure that sharing is acceptable

• Concurrency

Slide 1-14The OS as a Conductor

The OS coordinates the sharing and use of all the
components in the computer

8

Slide 1-15Multiprogramming

…

Abstract
Machine Pi

OS Resource Sharing

Pi Memory

Pk Memory

Pj Memory

…
Time-multiplexed
Physical Processor

Abstract
Machine Pj

Abstract
Machine Pk

Space-multiplexed
Physical Memory

Slide 1-16

Multiprogramming(2)
• Technique for sharing the CPU among

runnable processes
– Process may be blocked on I/O
– Process may be blocked waiting for other

resource, including the CPU
• While one process is blocked, another might

be able to run
• Multiprogramming OS accomplishes CPU

sharing “automatically” – scheduling
• Reduces time to run all processes

9

Slide 1-17How Multiprogramming Works

Process 1

Process 2

Process 3

Process 4

Space-multiplexed Memory

Time-multiplexed CPU

Slide 1-18Speeding Up the Car Wash

Vacuum
Inside Wash Dry

Vacuum
Inside

Wash Dry

(a) The Sequential Car Wash

(b) The Parallel Car Wash

10

Slide 1-19Multiprogramming Performance
Time

Using the processor
I/O operation

0 ti

Pi’s Total Execution Time, ti

(a) Pi’s Use of Machine Resources

Time

P1

P2

Pi

PN

…

…

(a) All Processes’ Use of Machine Resources

Slide 1-20OS Strategies

• Batch processing
• Timesharing
• Personal computer & workstations
• Process control & real-time
• Network
• Distributed
• Small computers

11

Slide 1-21Batch Processing

Job 19

Input Spooler Output Spooler

Job 3

Input Spool Output Spool

Slide 1-22Batch Processing(2)

• Uses multiprogramming
• Job (file of OS commands) prepared offline
• Batch of jobs given to OS at one time
• OS processes jobs one-after-the-other
• No human-computer interaction
• OS optimizes resource utilization
• Batch processing (as an option) still used

today

12

Slide 1-23A Shell Script Batch File

cc -g -c menu.c
cc -g -o driver driver.c menu.o
driver < test_data > test_out
lpr -PthePrinter test_out
tar cvf driver_test.tar menu.c driver.c test_data test_out
uuencode driver_test.tar driver_test.tar >driver_test.encode

Slide 1-24

Timesharing Systems

Physical
Machine

Abstract
Machines

…

Command

Command

Command

Result

Result

Result

13

Slide 1-25Timesharing Systems(2)

• Uses multiprogramming
• Support interactive computing model

(Illusion of multiple consoles)
• Different scheduling & memory allocation

strategies than batch
• Tends to propagate processes
• Considerable attention to resource isolation

(security & protection)
• Tend to optimize response time

Computer Research Corp ‘67

Slide 1-26Personal Computers

• CPU sharing among one person’s processes
• Power of computing for personal tasks

– Graphics
– Multimedia

• Trend toward very small OS
• OS focus on resource abstraction
• Rapidly evolved to “personal multitasking”

systems

14

Slide 1-27Process Control & Real-Time

• Computer is dedicated to a single purpose
• Classic embedded system
• Must respond to external stimuli in fixed

time
• Continuous media popularizing real-time

techniques
• An area of growing interest

Slide 1-28Networks

• LAN (Local Area Network) evolution
• 3Mbps (1975) → 10 Mbps (1980) → 100 Mbps

(1990) → 1 Gbps (2000)
• High speed communication means new way to do

computing
– Shared files
– Shared memory
– Shared procedures/objects
– ???

15

Slide 1-29Distributed OS

• Wave of the future

Distributed OS

App App

App

App

App
App

Multiple Computers connected by a Network

Slide 1-30Small Computers

• PDAs, STBs, embedded systems became
commercially significant

• Have an OS, but
– Not general purpose
– Limited hardware resources
– Different kinds of devices

• Touch screen, no keyboard
• Graffiti

– Evolving & leading to new class of Oses
• PalmOS, Pocket PC (WinCE), VxWorks, …

16

Slide 1-31Evolution of Modern OS

Modern OS

Batch

Timesharing

PC & Wkstation
Network OS

Real-Time
Memory Mgmt

Protection
Scheduling

Files
Devices

Memory Mgmt

Protection
Scheduling

System software
Human-Computer
 Interface

Client-Server Model

Protocols

Scheduling

Small Computer
Network storage,
Resource management

Slide 1-32Examples of Modern OS

• UNIX variants (e.g. Linux) -- have evolved
since 1970

• Windows NT/2K -- has evolved since 1989
(much more modern than UNIX
– Win2K = WinNT, V5

• Research OSes – still evolving …
• Small computer OSes – still evolving …

17

Slide 1-33The Microsoft OS Family
Win32 API

Windows CE
(Pocket PC)

Windows 95/98/Me

Windows NT/2000/XP

Win32 API Subset

Win32 API SubSet

Slide 1-34Summary

An Operating System must be able to:
• provide functionality to apps
• provide abstraction of hardware to users and apps
• provide the sharing of resources to processes
• provide security and protection
• be as transparent as possible
• be as light as possible

