Slide 8-1

Basic Synchronization
Principles

Slide 8-2

Concurrency

» Value of concurrency — speed & economics

» But few widely-accepted concurrent
programming languages (Java, C# are
exceptions)

» Few concurrent programming paradigm
— Each problem requires careful consideration
— There is no common model

 OS tools to support concurrency tend to be
“low level”

Command Execution Stide 8-3

Enter Loop Enter Loop

Another Another

Command?

9 .
Command? _ p . Loop Exit Loop
No No
Yes
fork () code CreateProcess () code
L N]
Execute Execute Execute
Command Command Command
Wait for Child
to Terminate
UNIX Shell Windows Command Launch

Synchronizing Multiple Threads with sues«
a Shared Variable

Initialize

CreateThread(..)

Wait runTime

seconds Thread Work

TRUE

runFlag=FALSE

Exit Terminate

Slide 8-5

Traffic Intersections

Slide 8-6

Critical Sections

shared double balance;

Code forp,_ Code for p,
balance = balance + amount; balance = balance -
amount;

bal(

ance+=amojunt

balance

Critical Sections

Execution of p; Execution of p,

load R1, balance
load R2, amount

>
>

Timer interrupt
load RI1,
load R2,
sub R1,
store R1,

Timer interrupt
add R1, R2
store R1, balance

v

balance
amount
R2
balance

Slide 8-7

Critical Sections

* Mutual exclusion: Only one process can be in the

critical section at a time

* There is a race to execute critical sections (race

condition)

» The sections may be defined by different code in

different processes

— .~. cannot easily detect with static analysis

« Without mutual exclusion, results of multiple

execution are not determinate

* Need an OS mechanism so programmer can

resolve races

Slide 8-8

Slide 8-9

Critical Sections

Mutual exclusion: Only one process can be in the
critical section at a time

There is a race to execute critical sections

The sections may be defined by different code in
different processes

— .~ cannot easily detect with static analysis
Without mutual exclusion, results of multiple
execution are not determinate

Need an OS mechanism so programmer can
resolve races

Slide 8-10

Some Possible Solutions

Disable interrupts

Software solution — locks
Transactions

FORK (), JOIN (), and QUIT (

— Terminate processes with qutT () to synchronize

— Create processes whenever critical section is
complete

... something new ...

Slide 8-11

Disabling Interrupts

shared double balance;

Code for p, Code for p,
disableInterrupts(); disableInterrupts();
balance = balance + amount; balance = balance -
amount;

enableInterrupts(); enablelInterrupts();

* Interrupts could be disabled arbitrarily long

* Really only want to prevent p, and p, from
interfering with one another; this blocks all p,

* Try using a shared “lock” variable

Using a Lock Variable Ser

shared boolean lock = FALSE;
shared double balance;
Code for p, Code for p,
/* Acquire the lock */ /* Acquire the lock */

while (lock) {NULL;} while (lock) {NULL;}

lock = TRUE; lock = TRUE;
/* Execute critical sect */ /* Execute critical sect */

balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */

lock = FALSE; lock = FALSE;

Busy Wait Condition

FALSE;

shared boolean lock =
shared double balance;

Code for p,
/* Acquire the lock */
while (lock) {NULL; }

Slide 8-13

Code for p,
/* Acquire the lock */
while (lock) {NULL; }

lock = TRUE; lock = TRUE;
/ /* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;
/* Release lock */ o /* Release lock */
lock = FALSE; B2 lock = FALSE;
4 <
o =
m s
P ---
. @
....... (h Hanannns
b & E R
'R e N o "
S = g S E
Slide 8-14

Unsafe “Solution”

shared boolean lock =
shared double balance;

Code for p,

/* Acquire the lock */
- while (lock) {NULL; }

lock = TRUE;

/* Execute critical sect */

balance = balance + amount;
/* Release lock */

lock = FALSE;

FALSE;

Code for p,
/* Acquire the lock */
while (lock) {NULL;}
lock = TRUE;
/* Execute critical sect */
balance = balance - amount;
/* Release lock */
lock = FALSE;

» Worse yet ... another race condition ...

* Is it possible to solve the problem?

Slide 8-15

Atomic Lock Manipulation

enter (lock) { exit(lock) {
disableInterrupts() ; disableInterrupts() ;
/* Loop until lock is TRUE */ lock = FALSE;
while (lock) { enableInterrupts() ;
/* Let interrupts occur */ }

enableInterrupts() ;
disableInterrupts() ;

}
lock = TRUE;
enableInterrupts() ;

» Bound the amount of time that interrupts are disabled
* Can include other code to check that it is OK to
assign a lock

e ... but this is still overkill ...

Atomic Lock Manipulation Saerie

shared int lock = FALSE;
shared double amount,balance;
Code for p, Code for p,
/* Acquire the lock */ /* Acquire the lock */

enter (lock) ; enter (lock) ;
/* Execute critical sect */ /* Execute critical sect */

balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */

exit(lock) ; exit(lock) ;

» Bound the amount of time that interrupts are disabled
* Can include other code to check that it is OK to
assign a lock

e ... but this is still overkill ...

Slide 8-17

Deadlocked Pirates

DeadIOCk (2) Slide 8-18

shared boolean lockl = FALSE;

shared boolean lock2 = FALSE;

shared list L;

Code for p, Code for p,

/* Enter CS to delete elt */ /* Enter CS to update len */
enter (lockl) ; enter (lock?2) ;
<delete element>; <update length>;
<intermediate computation>; <intermediate computation>

‘/* Enter CS to update len */ ‘/* Enter CS to add elt */

enter (lock?2) ; enter (lockl) ;
<update length>; <add element>;

/* Exit both CS */ /* Exit both CS */
exit (lockl); exit (lock2);

exit (lock2); exit (lockl);

Slide 8-19

Processing Two Components

shared boolean lockl FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p, Code for p,
/* Enter CS to delete elt */ /* Enter CS to update len */
enter (lockl) ; enter (lock?2) ;
<delete element>; <update length>;
/* Exit CS */ /* Exit CS */
exit (lockl); exit (lock2);
<intermediate computation>; <intermediate computation>
/* Enter CS to update len */ /* Enter CS to add elt */
enter (lock2) ; enter (lockl) ;
<update length>; <add element>;
/* Exit CS */ /* Exit CS */
exit (lock2); exit (lockl);
Transactions et

» A transaction is a list of operations

— When the system begins to execute the list, it
must execute all of them without interruption,
or

— It must not execute any at all
« Example: List manipulator
— Add or delete an element from a list
— Adjust the list descriptor, e.g., length
» Too heavyweight — need something simpler

10

Slide 8-21

A Semaphore

7 T

Slide 8-22

Dijkstra Semaphore

* Invented in the 1960s

» Conceptual OS mechanism, with no specific
implementation defined (could be
enter ()/exit ())

« Basis of all contemporary OS
synchronization mechanisms

11

Slide 8-23

Solution Constraints

* Processes p, & p, enter critical sections

» Mutual exclusion: Only one process at a
time in the CS

* Only processes competing for a CS are
involved in resolving who enters the CS

* Once a process attempts to enter its CS, it
cannot be postponed indefinitely

 After requesting entry, only a bounded
number of other processes may enter before
the requesting process

Slide 8-24

Notation

* Let fork(proc, N, arg,, arg,, .., argy) be
a command to create a process, and to have
it execute using the given N arguments

 Canonical problem:

Proc 0() | proc 1() {
while (TRUE) { while (TRUE ({
<compute section>; <compute section>;
<critical section>; <critical section>;

} }
} }

<shared global declarations>
<initial processing>

fork (proc 0, 0);
fork(proc 1, 0);

12

Slide 8-25

Solution Assumptions

» Memory read/writes are indivisible
(simultaneous attempts result in some
arbitrary order of access)

 There is no priority among the processes

 Relative speeds of the processes/processors
is unknown

» Processes are cyclic and sequential

Slide 8-26

Dijkstra Semaphore Definition

» Classic paper describes several software
attempts to solve the problem (see problem
4, Chapter 8)

* Found a software solution, but then
proposed a simpler hardware-based solution

» A semaphore, s, 1s a nonnegative integer
variable that can only be changed or tested
by these two indivisible functions:

V(s): [s = s + 1]
P(s): [while(s == 0) {wait}; s = s - 1]

13

Solving the Canonical Problem

Proc 0() {
while (TRUE) {
<compute section>;
P (mutex) ;
<critical section>;
V (mutex) ;
}
}
semaphore mutex = 1;

fork (proc 0, 0);
fork (proc_1, 0);

Slide 8-27

proc_1() {
while (TRUE ({
<compute section>;
P (mutex) ;
<critical section>;
V (mutex) ;

}

Shared Account Balance Problem

Proc 0() |
/* Enter the CS */
P (mutex) ;

balance += amount;
V (mutex) ;

}
semaphore mutex = 1;

fork (proc_ 0, 0);
fork (proc_1, 0);

Slide 8-28
proc_1() {
/* Enter the CS */
P (mutex) ;
balance -= amount;
V (mutex) ;

14

Sharing Two Variables Haer
proc A() { proc B() {
while (TRUE) ({ while (TRUE) ({
<compute section Al>; /* Wait for proc A */
update (x) ; P(sl);
/* Signal proc B */ retrieve (x);
V(sl); <compute section Bl>;

<compute section A2>;

/* Wait for proc B */
P(s2);
retrieve (y);
}
}

semaphore sl
semaphore s2

o O
~e N

fork (proc_ A,
fork (proc_ B,

update (y) ;
/* Signal proc A */
V(s2);
<compute section B2>;
}
}

Device Controller Synchronization

Slide 8-30

» The semaphore principle is logically used
with the busy and done flags in a controller

* Driver signals controller with a v (busy) ,
then waits for completion with P (done)

* Controller waits for work with P (busy),
then announces completion with v (done)

15

Bounded Buffer Problem Stide 831

Empty Pool
]
2]

Producer

%@@

Full Pool

Bounded Buffer Problem (2) Slide 832

producer () { consumer () |
buf type *next, *here; buf type *next, *here;
while (TRUE) { while (TRUE) {
produce item(next); /* Claim full buffer */
/* Claim an empty */ P (mutex) ;
P (empty) ; - P(full);
- P (mutex) ; here = obtain (full);
here = obtain (empty) ; V (mutex) ;
V (mutex) ; copy buffer (here, next);
copy buffer (next, here); P (mutex) ;
P (mutex) ; release (here, emptyPool);
release (here, fullPool); V (mutex) ;
V (mutex) ; /* Signal an empty buffer */
/* Signal a full buffer */ V (empty) ;
V(full); consume_item(next);
} }
} }
semaphore mutex = 1;
semaphore full = 0 /* A general (counting) semaphore */

semaphore empty = N; /* A general (counting) semaphore */
buf type buffer[N];

fork (producer, 0);

fork (consumer, 0);

16

Bounded Buffer Problem (3) Stide 833

producer () { consumer () |
buf type *next, *here; buf type *next, *here;
while (TRUE) { while (TRUE) {
produce item(next); /* Claim full buffer */
/* Claim an empty */ P(full); :
P (empty) ; CP (mutex) ;
P (mutex) ; here = obtain (full);
here = obtain (empty) ; V (mutex) ;
V (mutex) ; copy buffer (here, next);
copy buffer (next, here); P (mutex) ;
P (mutex) ; release (here, emptyPool);
release (here, fullPool); V (mutex) ;
V (mutex) ; /* Signal an empty buffer */
/* Signal a full buffer */ V (empty) ;
V(full); consume_item(next);
} }
} }
semaphore mutex = 1;

semaphore full = 0; /* A general (counting) semaphore */
semaphore empty = N; /* A general (counting) semaphore */
buf type buffer[N];
fork (producer, 0);
fork (consumer, 0);

Readers-Writers Problem Stide 8-34

Writers

Readers

17

Readers-Writers Problem (2)

= CE

__]

Shared Resource

Slide 8-35

Readers-Writers Problem (3)

=
'ﬂ\
Cirter >
T

=

Shared Resource

Slide 8-36

18

Readers-Writers Problem (4)

Shared Resource

Slide 8-37

First Solution

reader () {
while (TRUE) {
<other computing>;
P (mutex) ;
readCount++;
if (readCount == 1)
- P(writeBlock) ;
V (mutex) ;
/* Critical section */
access (resource) ;
P (mutex) ;
readCount--;
if (readCount == 0)
V(writeBlock) ;
V (mutex) ;
}
}
resourceType *resource;
int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;
fork (reader, 0);
fork (writer, 0);

writer () {

while (TRUE) {
<other computing>;
P(writeBlock) ;
/* Critical section */

access (resource) ;

V(writeBlock) ;

}

*First reader competes with writers

*Last reader signals writers

Slide 8-38

19

First Solution (2)

reader () {
while (TRUE) {

<other computing>;

P (mutex) ;
readCount++;
if (readCount == 1)

P(writeBlock) ;
V (mutex) ;

/* Critical section */
‘ access (resource) ;
P (mutex) ;

readCount--;
if (readCount == 0)
V(writeBlock) ;
V (mutex) ;

}

resourceType *resource;
int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;
fork (reader, 0);

fork (writer, 0);

Slide 8-39

writer () {
while (TRUE) {
<other computing>;
P(writeBlock) ;
/* Critical section */
access (resource) ;
V(writeBlock) ;

*Any writer must wait for all readers
*Readers can starve writers
*“Updates” can be delayed forever
*May not be what we want

Writer
reader () {

while (TRUE) {
<other computing>;

ﬂ» P (readBlock) ;

P (mutexl) ;
readCount++;
m if (readCount ==
P(writeBlock)

V(mutexl) ;

l V (readBlock) ;

access (resource) ;
P (mutexl) ;
readCount--;
if (readCount == 0)
V(writeBlock) ;

V(mutexl) ;
}
}
int readCount = 0, writeC
semaphore mutex = 1, mute
semaphore readBlock = 1,

fork (reader, 0);
fork (writer, 0);

Precedence Slde 840

writer () {
while (TRUE) {
<other computing>;
P (mutex?2) ;
writeCount++;
if (writeCount == 1)
B» P (readBlock) ;
) V (mutex?2) ;
; P(writeBlock) ;
access (resource) ;
V(writeBlock) ;
P (mutex2)
writeCount--;
if (writeCount == 0)
V (readBlock) ;

V(mutex2) ;
}
}
ount = 0;
x2 = 1;
writeBlock = 1, writePending = 1;

20

Writer Precedence (2) Siide 341

reader () { writer () {
while (TRUE) { while (TRUE) {
<other computing>; <other computing>;
m P(writePending) ; P (mutex2);
P (readBlock) ; writeCount++;
P (mutexl) ; if (writeCount ==
readCount++; (3) P (readBlock) ;
(Z» if (readCount == 1) V (mutex2) ;
P(writeBlock) ; P(writeBlock) ;
V(mutexl) ; access (resource) ;
V (readBlock) ; V(writeBlock) ;
m\/ (writePending) ; P (mutex2)
access (resource) ; writeCount--;

P (mutexl) ; if (writeCount == 0)
readCount--; V (readBlock) ;
if (readCount == 0) V (mutex?2) ;

V(writeBlock) ; }

V(mutexl) ; }

}
}
int readCount = 0, writeCount = 0;

semaphore mutex 1, mutex2 = 1;

semaphore readBlock = 1, writeBlock = 1, writePending = 1;

fork (reader, 0);
fork (writer, 0);

The Sleepy Barber Stde 842

» Barber can cut one person’s hair at a time
* Other customers wait in a waiting room

Entrance to Waiting

Room (sliding door) 7

Shop Exit

L Entrance to Barber’s
Room (sliding door)

Waiting Room

21

Sleepy Barber (aka Bounded Buffer) *“**

customer () | barber () {
while (TRUE) { while (TRUE) {
customer = nextCustomer () ; P (waitingCustomer) ;
if (emptyChairs == 0) P (mutex) ;
continue; emptyChairs++;
P(chair); takeCustomer () ;
P (mutex) ; V (mutex) ;
emptyChairs--; V(chair);
takeChair (customer) ; }
V (mutex) ; }

V(waitingCustomer) ;
}
}

semaphore mutex = 1, chair = N, waitingCustomer = 0;
int emptyChairs = N;
fork (customer, O0);

fork (barber, 0);

Slide 8-44

Cigarette Smoker’s Problem

» Three smokers (processes)

» Each wish to use tobacco, papers, &
matches
— Only need the three resources periodically
— Must have all at once

* 3 processes sharing 3 resources
— Solvable, but difficult

22

Implementing Semaphores

* Minimize effect on the I/O system

 Processes are only blocked on their own
critical sections (not critical sections that
they should not care about)

« If disabling interrupts, be sure to bound the

time they are disabled

Slide 8-45

Implementing Semaphores:
enter () &exit ()

class semaphore {
int value;
public:
semaphore (int v = 1) { value = v;};
PO {
disableInterrupts () ;
while (value == 0) {
enableInterrupts();
disableInterrupts() ;
}
value--;
enableInterrupts();

V()|
disableInterrupts () ;
value+t+;
enableInterrupts();

}i

}i

Slide 8-46

23

Implementing Semaphores: Stde 847
Test and Set Instruction

¢ TS(m): [Reg 1= memory[m]; memory[m] = TRUE;]

Data CC Data CC
Register Register Register Register

R3] -] R3 [mazsg] [o]

M| FaLSE m| true
Primary Primary
Memory Memory
(a) Before Executing TS (b) After Executing TS

Slide 8-48

Using the TS Instruction

boolean s = FALSE; semaphore s = 1;
while (TS (s)) ; P(s) ;
<critical section> <critical section>
s = FALSE; Vi(s);

24

Implementing the General Semaphore

struct semaphore {
int value = <initial value>;
boolean mutex = FALSE;
boolean hold = TRUE;

Y

shared struct semaphore s;

P(struct semaphore s) {

while (TS (s.mutex)) ; while (TS (s.mutex))

s.value--; s.value+t+;

if (s.value < 0) (if (s.value <= 0) (
s.mutex = FALSE; while(!s.hold) ;
while (TS (s.hold)) ; s.hold = FALSE;

} }

else

s.mutex = FALSE;
s.mutex = FALSE; }

Slide 8-49

V(struct semaphore s) {

’

Active vs Passive Semaphores

» A process can dominate the semaphore
— Performs V operation, but continues to execute

— Performs another P operation before releasing
the CPU

— Called a passive implementation of V

* Active implementation calls scheduler as
part of the V operation.
— Changes semantics of semaphore!
— Cause people to rethink solutions

Slide 8-50

25

