
1

Slide 8-1

Basic Synchronization
Principles

Slide 8-2Concurrency

• Value of concurrency – speed & economics
• But few widely-accepted concurrent

programming languages (Java, C# are
exceptions)

• Few concurrent programming paradigm
– Each problem requires careful consideration
– There is no common model

• OS tools to support concurrency tend to be
“low level”

2

Slide 8-3Command Execution

Another
Command?

Execute
Command

No
Exit Loop

Yes

Enter Loop

Another
Command?

No
Exit Loop

Yes

Enter Loop

Wait for Child
to Terminate

Execute
Command

Execute
Command

…

UNIX Shell Windows Command Launch

fork()code CreateProcess()code

Slide 8-4Synchronizing Multiple Threads with
a Shared Variable

…

Wait runTime
seconds

Initialize

CreateThread(…)

runFlag=FALSE

Terminate

Thread Work

Exit

runFlag?

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

3

Slide 8-5Traffic Intersections

Slide 8-6Critical Sections

shared double balance;

Code for p1 Code for p2

balance = balance + amount; balance = balance -
amount;

balance+=amount balance-=amount

balance

4

Slide 8-7

Critical Sections

…
load R1, balance
load R2, amount

…
load R1, balance
load R2, amount
sub R1, R2
store R1, balance
…

add R1, R2
store R1, balance
…

Timer interrupt

Timer interrupt

Execution of p1 Execution of p2

Slide 8-8

Critical Sections

• Mutual exclusion: Only one process can be in the
critical section at a time

• There is a race to execute critical sections (race
condition)

• The sections may be defined by different code in
different processes
– ∴ cannot easily detect with static analysis

• Without mutual exclusion, results of multiple
execution are not determinate

• Need an OS mechanism so programmer can
resolve races

5

Slide 8-9

Critical Sections
• Mutual exclusion: Only one process can be in the

critical section at a time
• There is a race to execute critical sections
• The sections may be defined by different code in

different processes
– ∴ cannot easily detect with static analysis

• Without mutual exclusion, results of multiple
execution are not determinate

• Need an OS mechanism so programmer can
resolve races

Slide 8-10Some Possible Solutions

• Disable interrupts
• Software solution – locks
• Transactions
• FORK(), JOIN(), and QUIT(

– Terminate processes with QUIT() to synchronize
– Create processes whenever critical section is

complete

• … something new …

6

Slide 8-11

Disabling Interrupts
shared double balance;

Code for p1 Code for p2
disableInterrupts(); disableInterrupts();
balance = balance + amount; balance = balance -
amount;
enableInterrupts(); enableInterrupts();

• Interrupts could be disabled arbitrarily long
• Really only want to prevent p1 and p2 from

interfering with one another; this blocks all pi

• Try using a shared “lock” variable

Slide 8-12Using a Lock Variable

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
 while(lock){NULL;} while(lock){NULL;}
 lock = TRUE; lock = TRUE;
/* Execute critical sect */ /* Execute critical sect */
 balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */
 lock = FALSE; lock = FALSE;

7

Slide 8-13Busy Wait Condition
shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
 while(lock){NULL;} while(lock){NULL;}
 lock = TRUE; lock = TRUE;
/ /* Execute critical sect */ /* Execute critical sect */
 balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */
 lock = FALSE; lock = FALSE;

p1

p2

B
lo

ck
ed

at
 w
h
i
l
e

l
o
c
k

=

T
R
U
E

l
o
c
k

=

F
A
L
S
E

In
te

rr
up

t

In
te

rr
up

t

In
te

rr
up

t

Slide 8-14Unsafe “Solution”

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
 while(lock){NULL;} while(lock){NULL;}
 lock = TRUE; lock = TRUE;
/* Execute critical sect */ /* Execute critical sect */
 balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */
 lock = FALSE; lock = FALSE;

• Worse yet … another race condition …
• Is it possible to solve the problem?

8

Slide 8-15Atomic Lock Manipulation
enter(lock) { exit(lock) {
 disableInterrupts(); disableInterrupts();
/* Loop until lock is TRUE */ lock = FALSE;
 while(lock) { enableInterrupts();
 /* Let interrupts occur */ }
 enableInterrupts();
 disableInterrupts();
 }
 lock = TRUE;
 enableInterrupts();
}

• Bound the amount of time that interrupts are disabled
• Can include other code to check that it is OK to
assign a lock
• … but this is still overkill …

Slide 8-16Atomic Lock Manipulation

• Bound the amount of time that interrupts are disabled
• Can include other code to check that it is OK to
assign a lock
• … but this is still overkill …

shared int lock = FALSE;
shared double amount,balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
 enter(lock); enter(lock);
/* Execute critical sect */ /* Execute critical sect */
 balance = balance + amount; balance = balance - amount;
/* Release lock */ /* Release lock */
 exit(lock); exit(lock);

9

Slide 8-17

Deadlocked Pirates

Slide 8-18Deadlock (2)

shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2

/* Enter CS to delete elt */ /* Enter CS to update len */
 enter(lock1); enter(lock2);
 <delete element>; <update length>;

 <intermediate computation>; <intermediate computation>
/* Enter CS to update len */ /* Enter CS to add elt */
 enter(lock2); enter(lock1);
 <update length>; <add element>;
/* Exit both CS */ /* Exit both CS */
 exit(lock1); exit(lock2);
 exit(lock2); exit(lock1);

10

Slide 8-19Processing Two Components

shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2

/* Enter CS to delete elt */ /* Enter CS to update len */
 enter(lock1); enter(lock2);
 <delete element>; <update length>;
/* Exit CS */ /* Exit CS */
 exit(lock1); exit(lock2);
 <intermediate computation>; <intermediate computation>
/* Enter CS to update len */ /* Enter CS to add elt */
 enter(lock2); enter(lock1);
 <update length>; <add element>;
/* Exit CS */ /* Exit CS */
 exit(lock2); exit(lock1);

Slide 8-20Transactions

• A transaction is a list of operations
– When the system begins to execute the list, it

must execute all of them without interruption,
or

– It must not execute any at all
• Example: List manipulator

– Add or delete an element from a list
– Adjust the list descriptor, e.g., length

• Too heavyweight – need something simpler

11

Slide 8-21

A Semaphore

Slide 8-22Dijkstra Semaphore

• Invented in the 1960s
• Conceptual OS mechanism, with no specific

implementation defined (could be
enter()/exit())

• Basis of all contemporary OS
synchronization mechanisms

12

Slide 8-23Solution Constraints

• Processes p0 & p1 enter critical sections
• Mutual exclusion: Only one process at a

time in the CS
• Only processes competing for a CS are

involved in resolving who enters the CS
• Once a process attempts to enter its CS, it

cannot be postponed indefinitely
• After requesting entry, only a bounded

number of other processes may enter before
the requesting process

Slide 8-24Notation
• Let fork(proc, N, arg1, arg2, …, argN)be

a command to create a process, and to have
it execute using the given N arguments

• Canonical problem:
Proc_0() { proc_1() {
 while(TRUE) { while(TRUE {
 <compute section>; <compute section>;
 <critical section>; <critical section>;
 } }
} }

<shared global declarations>
<initial processing>
fork(proc_0, 0);
fork(proc_1, 0);

13

Slide 8-25Solution Assumptions

• Memory read/writes are indivisible
(simultaneous attempts result in some
arbitrary order of access)

• There is no priority among the processes
• Relative speeds of the processes/processors

is unknown
• Processes are cyclic and sequential

Slide 8-26Dijkstra Semaphore Definition

V(s): [s = s + 1]
P(s): [while(s == 0) {wait}; s = s - 1]

• Classic paper describes several software
attempts to solve the problem (see problem
4, Chapter 8)

• Found a software solution, but then
proposed a simpler hardware-based solution

• A semaphore, s, is a nonnegative integer
variable that can only be changed or tested
by these two indivisible functions:

14

Slide 8-27Solving the Canonical Problem

Proc_0() { proc_1() {
 while(TRUE) { while(TRUE {
 <compute section>; <compute section>;
 P(mutex); P(mutex);
 <critical section>; <critical section>;
 V(mutex); V(mutex);
 } }
} }

semaphore mutex = 1;
fork(proc_0, 0);
fork(proc_1, 0);

Slide 8-28Shared Account Balance Problem

Proc_0() { proc_1() {

/* Enter the CS */ /* Enter the CS */
 P(mutex); P(mutex);
 balance += amount; balance -= amount;
 V(mutex); V(mutex);

} }

semaphore mutex = 1;

fork(proc_0, 0);
fork(proc_1, 0);

15

Slide 8-29Sharing Two Variables
proc_A() {
 while(TRUE) {
 <compute section A1>;
 update(x);
 /* Signal proc_B */
 V(s1);
 <compute section A2>;
 /* Wait for proc_B */
 P(s2);
 retrieve(y);
 }
}

semaphore s1 = 0;
semaphore s2 = 0;

fork(proc_A, 0);
fork(proc_B, 0);

proc_B() {
 while(TRUE) {
 /* Wait for proc_A */
 P(s1);
 retrieve(x);
 <compute section B1>;
 update(y);
 /* Signal proc_A */
 V(s2);
 <compute section B2>;
 }
}

Slide 8-30Device Controller Synchronization

• The semaphore principle is logically used
with the busy and done flags in a controller

• Driver signals controller with a V(busy),
then waits for completion with P(done)

• Controller waits for work with P(busy),
then announces completion with V(done)

16

Slide 8-31Bounded Buffer Problem

Producer Consumer

Empty Pool

Full Pool

Slide 8-32Bounded Buffer Problem (2)
producer() {
 buf_type *next, *here;
 while(TRUE) {
 produce_item(next);
 /* Claim an empty */
 P(empty);
 P(mutex);
 here = obtain(empty);
 V(mutex);
 copy_buffer(next, here);
 P(mutex);
 release(here, fullPool);
 V(mutex);
 /* Signal a full buffer */
 V(full);
 }
}
semaphore mutex = 1;
semaphore full = 0; /* A general (counting) semaphore */
semaphore empty = N; /* A general (counting) semaphore */
buf_type buffer[N];
fork(producer, 0);
fork(consumer, 0);

consumer() {
 buf_type *next, *here;
 while(TRUE) {
 /* Claim full buffer */
 P(mutex);
 P(full);
 here = obtain(full);
 V(mutex);
 copy_buffer(here, next);
 P(mutex);
 release(here, emptyPool);
 V(mutex);
 /* Signal an empty buffer */
 V(empty);
 consume_item(next);
 }
}

17

Slide 8-33Bounded Buffer Problem (3)
producer() {
 buf_type *next, *here;
 while(TRUE) {
 produce_item(next);
 /* Claim an empty */
 P(empty);
 P(mutex);
 here = obtain(empty);
 V(mutex);
 copy_buffer(next, here);
 P(mutex);
 release(here, fullPool);
 V(mutex);
 /* Signal a full buffer */
 V(full);
 }
}
semaphore mutex = 1;
semaphore full = 0; /* A general (counting) semaphore */
semaphore empty = N; /* A general (counting) semaphore */
buf_type buffer[N];
fork(producer, 0);
fork(consumer, 0);

consumer() {
 buf_type *next, *here;
 while(TRUE) {
 /* Claim full buffer */
 P(full);
 P(mutex);
 here = obtain(full);
 V(mutex);
 copy_buffer(here, next);
 P(mutex);
 release(here, emptyPool);
 V(mutex);
 /* Signal an empty buffer */
 V(empty);
 consume_item(next);
 }
}

Slide 8-34Readers-Writers Problem

Readers

Writers

18

Slide 8-35Readers-Writers Problem (2)

Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter

Slide 8-36Readers-Writers Problem (3)

Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter

19

Slide 8-37Readers-Writers Problem (4)

Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriter

Writer

Slide 8-38First Solution
reader() {
 while(TRUE) {
 <other computing>;
 P(mutex);
 readCount++;
 if(readCount == 1)
 P(writeBlock);
 V(mutex);
 /* Critical section */
 access(resource);
 P(mutex);
 readCount--;
 if(readCount == 0)
 V(writeBlock);
 V(mutex);
 }
}
resourceType *resource;
int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;
fork(reader, 0);
fork(writer, 0);

writer() {
 while(TRUE) {
 <other computing>;
 P(writeBlock);
 /* Critical section */
 access(resource);
 V(writeBlock);
 }
}

•First reader competes with writers
•Last reader signals writers

20

Slide 8-39First Solution (2)
reader() {
 while(TRUE) {
 <other computing>;
 P(mutex);
 readCount++;
 if(readCount == 1)
 P(writeBlock);
 V(mutex);
 /* Critical section */
 access(resource);
 P(mutex);
 readCount--;
 if(readCount == 0)
 V(writeBlock);
 V(mutex);
 }
}
resourceType *resource;
int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;
fork(reader, 0);
fork(writer, 0);

writer() {
 while(TRUE) {
 <other computing>;
 P(writeBlock);
 /* Critical section */
 access(resource);
 V(writeBlock);
 }
}

•First reader competes with writers
•Last reader signals writers
•Any writer must wait for all readers
•Readers can starve writers
•“Updates” can be delayed forever
•May not be what we want

Slide 8-40Writer Precedence
reader() {
 while(TRUE) {
 <other computing>;

 P(readBlock);
 P(mutex1);
 readCount++;
 if(readCount == 1)
 P(writeBlock);
 V(mutex1);
 V(readBlock);

 access(resource);
 P(mutex1);
 readCount--;
 if(readCount == 0)
 V(writeBlock);
 V(mutex1);
 }
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;
fork(reader, 0);
fork(writer, 0);

writer() {
 while(TRUE) {
 <other computing>;
 P(mutex2);
 writeCount++;
 if(writeCount == 1)
 P(readBlock);
 V(mutex2);
 P(writeBlock);
 access(resource);
 V(writeBlock);
 P(mutex2)
 writeCount--;
 if(writeCount == 0)
 V(readBlock);
 V(mutex2);
 }
}

1

2
3

4

21

Slide 8-41Writer Precedence (2)
reader() {
 while(TRUE) {
 <other computing>;
 P(writePending);
 P(readBlock);
 P(mutex1);
 readCount++;
 if(readCount == 1)
 P(writeBlock);
 V(mutex1);
 V(readBlock);
 V(writePending);
 access(resource);
 P(mutex1);
 readCount--;
 if(readCount == 0)
 V(writeBlock);
 V(mutex1);
 }
}
int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;
fork(reader, 0);
fork(writer, 0);

writer() {
 while(TRUE) {
 <other computing>;
 P(mutex2);
 writeCount++;
 if(writeCount == 1)
 P(readBlock);
 V(mutex2);
 P(writeBlock);
 access(resource);
 V(writeBlock);
 P(mutex2)
 writeCount--;
 if(writeCount == 0)
 V(readBlock);
 V(mutex2);
 }
}

1

2
3

4

Slide 8-42The Sleepy Barber

Waiting Room

Entrance to Waiting
Room (sliding door)

Entrance to Barber’s
Room (sliding door)

Shop Exit

• Barber can cut one person’s hair at a time
• Other customers wait in a waiting room

22

Slide 8-43Sleepy Barber (aka Bounded Buffer)

customer() {
 while(TRUE) {
 customer = nextCustomer();
 if(emptyChairs == 0)
 continue;
 P(chair);
 P(mutex);
 emptyChairs--;
 takeChair(customer);
 V(mutex);
 V(waitingCustomer);
 }
}

semaphore mutex = 1, chair = N, waitingCustomer = 0;
int emptyChairs = N;
fork(customer, 0);
fork(barber, 0);

barber() {
 while(TRUE) {
 P(waitingCustomer);
 P(mutex);
 emptyChairs++;
 takeCustomer();
 V(mutex);
 V(chair);
 }
}

Slide 8-44Cigarette Smoker’s Problem

• Three smokers (processes)
• Each wish to use tobacco, papers, &

matches
– Only need the three resources periodically
– Must have all at once

• 3 processes sharing 3 resources
– Solvable, but difficult

23

Slide 8-45Implementing Semaphores

• Minimize effect on the I/O system
• Processes are only blocked on their own

critical sections (not critical sections that
they should not care about)

• If disabling interrupts, be sure to bound the
time they are disabled

Slide 8-46Implementing Semaphores:
enter() & exit()

class semaphore {
 int value;
public:
 semaphore(int v = 1) { value = v;};
 P(){
 disableInterrupts();
 while(value == 0) {
 enableInterrupts();
 disableInterrupts();
 }
 value--;
 enableInterrupts();
 };
 V(){
 disableInterrupts();
 value++;
 enableInterrupts();
 };
};

24

Slide 8-47Implementing Semaphores:
Test and Set Instruction

FALSEm

Primary
Memory

…R3 …

Data
Register

CC
Register

(a) Before Executing TS

TRUEm

Primary
Memory

FALSER3 =0

Data
Register

CC
Register

(b) After Executing TS

• TS(m): [Reg_i = memory[m]; memory[m] = TRUE;]

Slide 8-48Using the TS Instruction

boolean s = FALSE;
 . . .
 while(TS(s)) ;
 <critical section>
 s = FALSE;
 . . .

semaphore s = 1;
 . . .
 P(s) ;
 <critical section>
 V(s);
 . . .

25

Slide 8-49Implementing the General Semaphore

struct semaphore {
 int value = <initial value>;
 boolean mutex = FALSE;
 boolean hold = TRUE;
};

shared struct semaphore s;

P(struct semaphore s) {
 while(TS(s.mutex)) ;
 s.value--;
 if(s.value < 0) (
 s.mutex = FALSE;
 while(TS(s.hold)) ;
 }
 else
 s.mutex = FALSE;
}

V(struct semaphore s) {
 while(TS(s.mutex)) ;
 s.value++;
 if(s.value <= 0) (
 while(!s.hold) ;
 s.hold = FALSE;
 }
 s.mutex = FALSE;
}

Slide 8-50Active vs Passive Semaphores

• A process can dominate the semaphore
– Performs V operation, but continues to execute
– Performs another P operation before releasing

the CPU
– Called a passive implementation of V

• Active implementation calls scheduler as
part of the V operation.
– Changes semantics of semaphore!
– Cause people to rethink solutions

