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Synchronization Principles

Gordon College
Stephen Brinton

The Problem with Concurrency
• Concurrent access to shared data may

result in data inconsistency
• Maintaining data consistency requires

mechanisms to ensure the orderly
execution of cooperating processes

• CONSUMER-PRODUCER problem

BUFFER

ConsumerProducer count
outin
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Producer-Consumer
PRODUCER

while (true)
{
     /* produce an item and put in nextProduced

while (count == BUFFER_SIZE)
; // do nothing

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

CONSUMER

while (true)
{

while (count == 0)
; // do nothing

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

// consume the item in nextConsumered

}

Race Condition
• count++ could be implemented as

     register1 = count
     register1 = register1 + 1
     count = register1

• count-- could be implemented as
     register2 = count
     register2 = register2 - 1
     count = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = count   {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6}
S2: consumer execute register2 = count   {register2 = 5}
S3: consumer execute register2 = register2 - 1   {register2 = 4}
S4: producer execute count = register1   {count = 6 }
S5: consumer execute count = register2   {count = 4}
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Solution to Critical Section
1. Mutual Exclusion – exclusive access to the

critical section of the cooperating group.

Entry section

Exit section

do {

critical section

remainder section

} while (TRUE);

Solution to Critical Section (CS)

1. Mutual Exclusion – exclusive access to the
critical section of the cooperating group.

2. Progress – no process in CS – then
selection of process to enter CS cannot be
postponed indefinitely
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Solution to Critical Section
1. Mutual Exclusion – exclusive access to the

critical section of the cooperating group.
2. Progress – no process in CS – then

selection of process to enter CS cannot be
postponed indefinitely

3. Bounded Waiting -  There exists a bound (or
limit) on the number of times other
processes can enter CS after a process has
made a request to enter and before it
enters.

Peterson’s Solution: Algorithmic Model

• Two process solution
• Assume that the LOAD and STORE instructions

are atomic; that is, cannot be interrupted.
• The two processes share two variables:

– int turn;
– Boolean flag[2]

• The variable turn indicates whose turn it is to enter
the critical section.

• The flag array: process is ready to enter the critical
section. If (flag[i] == true) implies that process Pi is
ready!
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Peterson’s Solution: Process P1

do {
               flag[i] = TRUE;  Acquire Lock
               turn = j;
               while ( flag[j] && turn == j);

                     CRITICAL SECTION

               flag[i] = FALSE;  Release Lock

                       REMAINDER SECTION

          } while (TRUE);

Synchronization Hardware

• Many systems provide hardware support for critical section
code

• Uniprocessors – could disable interrupts
– Currently running code would execute without preemption
– Generally too inefficient on multiprocessor systems (must

tell all CPUs)
• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware
instructions: Atomic = non-interruptable

– Two types:
• test memory word and set value
• swap contents of two memory words
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TestAndndSet Instruction

Definition:

         boolean TestAndSet (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }

Solution Demo: TestAndndSet Instruction

• Shared boolean variable lock., initialized to false.
• Solution:
          do {
             while ( TestAndSet (&lock )) Acquire Lock
                        ;   /* do nothing

                 //    critical section

             lock = FALSE; Release Lock

                 //    remainder section

           } while ( TRUE);
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Solution Demo: TestAndndSet Instruction

• Shared boolean variable lock., initialized to false.
• Solution:
          do {
             while ( TestAndSet (&lock )) Acquire Lock
                        ;   /* do nothing

                 //    critical section

             lock = FALSE; Release Lock

                 //    remainder section

           } while ( TRUE);

 boolean TestAndSet (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }

Swap  Instruction

Definition:

         void Swap (boolean *a, boolean *b)
          {
               boolean temp = *a;
               *a = *b;
               *b = temp:
          }



8

Solution Demo: Swap Instruction

• Shared Boolean variable lock initialized to FALSE; Each process has
a local Boolean variable key.

• Solution:
          do {
                key = TRUE;
                 while ( key == TRUE)
                       Swap (&lock, &key );

                         //    critical section

                  lock = FALSE;

                       //      remainder section

               } while ( TRUE);

Semaphore
• Does this require busy waiting?
• Semaphore S – integer variable
• Two standard operations modify S: wait() and signal()

– Originally called P() and V()
• Less complicated
• Can only be accessed via two indivisible (atomic)

operations
signal (S) {
        S++;
}

wait (S) {
           while S <= 0
                  ; // no-op
              S--;
}
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The Basic Semaphore
• Counting semaphore – integer value can range over

an unrestricted domain
• Binary semaphore – integer value can range only

between 0 and 1; can be simpler to implement
– Also known as mutex locks

• Provides mutual exclusion
Semaphore S;    //  initialized to 1
wait (S);
        Critical Section
signal (S);

Another Semaphore Use

wait(synch);
S2;

S1;
signal(synch);

Process 2Process 1

Both processes are running concurrently – statement S2
must be executed only after executing statement S1
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Semaphore Implementation
• Requires Busy Waiting  (waste of CPU cycles)

•Called a “Spin Lock”
• Can modify the definition of wait() and signal():

•No busy waiting
•Uses a queue, block, and wakeup

typedef struct {
int value;
struct process *list

} semaphore;

Semaphore Implementation:  no Busy waiting
 Implementation of wait:
wait (semaphore *S) {

S->value--;
if (S->value < 0) {
              add this process to waiting queue (S->list)
          block();  }

}

 Implementation of signal:
signal (semaphore *S) {

S->value++;
if (S->value <= 0) {
                 remove a process P from the waiting queue(S->list)

wakeup(P);  }
}
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Semaphore Implementation: no Busy waiting

 With each semaphore there is an associated waiting
queue. Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on
the      appropriate waiting queue.
 wakeup – remove one of processes in the waiting
queue and place it in the ready queue.

Semaphore Implementation

 Must be executed atomically: no processes can execute
wait () and signal () on the same semaphore at the same
time
 Thus, implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section.

 Could now have busy waiting in critical section
implementation

But implementation code is short
Little busy waiting if critical section rarely occupied
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Deadlock and
Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes
 Let S and Q be two semaphores initialized to 1

P0 P1

    wait (S);                                      wait (Q);
      wait (Q);                                      wait (S);
. .
. .
        signal  (S);                        signal (Q);
        signal (Q);                                     signal (S);

 Starvation  – indefinite blocking.  A process may never be removed from the
semaphore queue in which it is suspended.

Deadlock and
Starvation
Solution?

What is a transaction?
•A transaction is a list of operations

–When the system begins to execute the list, it must
execute all of them without interruption, or
–It must not execute any at all

•Example: List manipulator
–Add or delete an element from a list
–Adjust the list descriptor, e.g., length

•Too heavyweight – need something simpler
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Well-known Problems of
Synchronization

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem

Bounded-Buffer Problem

• N buffers, each can hold one item
• Semaphore mutex initialized to the value 1
• Semaphore full initialized to the value 0
• Semaphore empty initialized to the value N.

BUFFER
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Bounded-Buffer Problem

• N buffers, each can hold one item
• Semaphore mutex initialized to the value 1
• Semaphore full initialized to the value 0
• Semaphore empty initialized to the value N.

BUFFER

Bounded Buffer Problem (Cont.)
• The structure of the producer process

           do {
                     //   produce an item
               wait (empty);
               wait (mutex);
                   //  add the item to the  buffer
                signal (mutex);
                signal (full);
             } while (true);
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Bounded Buffer Problem (Cont.)
• The structure of the consumer process

           do {
               wait (full);
               wait (mutex);
                   //  remove an item from  buffer
                signal (mutex);
                signal (empty);
                    //  consume the removed item
           } while (true);

Readers-Writers Problem
• A data set is shared among a number of

concurrent processes
– Readers – only read the data set; they do not

perform any updates
– Writers   – can both read and write.

• Problem – allow multiple readers to read at the
same time.  Only one single writer can access
the shared data at the same time.

• Shared Data
– Data set
– Semaphore mutex initialized to 1.
– Semaphore wrt initialized to 1.
– Integer readcount initialized to 0.



16

Readers-Writers Problem (Cont.)
• The structure of a writer process

              do  {
                     wait (wrt) ;

                       //    writing is performed

                     signal (wrt) ;
                } while (true)

Readers-Writers Problem (Cont.)
• The structure of a reader process

              do  {
                     wait (mutex) ;
                     readcount ++ ;
                     if (readcount == 1)  wait (wrt) ;
                     signal (mutex)

                           // reading is performed

                     wait (mutex) ;
                     readcount  - - ;
                     if readcount  == 0)  signal (wrt) ;
                     signal (mutex) ;
                } while (true)



17

Readers-Writers Locks
Generalized to provide reader-writer locks on

some systems.

Most useful in following situations:

1. In apps where it is easy to identify which
processes only read shared data and which
only write shared data.

2. In apps with more readers than writers.
More overhead to create reader-writer lock
than plain semaphores.

Dining-Philosophers Problem

• Shared data
– Bowl of rice (data set)
– Semaphore chopstick[5]

initialized to 1
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Dining-Philosophers Problem (Cont.)

• The structure of Philosopher i :

Do  {
      wait ( chopstick[i] );

 wait ( chopStick[ (i + 1) % 5] );

       //  eat

 signal ( chopstick[i] );
 signal (chopstick[ (i + 1) % 5] );

           //  think

} while (true) ;

Dining-Philosophers Problem (Cont.)

• The structure of Philosopher i :

Do  {
      wait ( chopstick[i] );

 wait ( chopStick[ (i + 1) % 5] );

       //  eat

 signal ( chopstick[i] );
 signal (chopstick[ (i + 1) % 5] );

           //  think

} while (true) ;

DEADLOCK POSSIBLE
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Problems with Semaphores
•  Incorrect use of semaphore

operations:

–  signal (mutex)  ….  wait (mutex)
No mutual exclusion

–  wait (mutex)  …  wait (mutex)  
 Deadlock

–  Omitting  of wait (mutex) or signal
(mutex) (or both)

 Either no mutual exclusion or deadlock

Monitors
• A high-level abstraction that provides a

convenient and effective mechanism for
process synchronization

• Only one process may be active within the
monitor at a time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…

procedure Pn (…) {……}

     Initialization code ( ….) { … }
…

}
}
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Schematic view of a Monitor

Condition Variables
• condition x, y;

• Two operations on a condition
variable:
– x.wait ()  – a process that invokes the

operation is suspended.
– x.signal () – resumes one of processes

(if any) that invoked x.wait ()
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Condition Variables
• If Q is signaled to continue then

P must wait:
• Note: remember only one process in

monitor at a time

• Possible scenarios:
– Signal and wait: P waits for Q to

leave or suspend
– Signal and continue: Q waits for

P to leave or suspend

 Monitor with Condition Variables
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Solution to Dining Philosophers
monitor DP
   {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
       state[i] = HUNGRY;
       test(i);
       if (state[i] != EATING) self [i].wait;
}

       void putdown (int i) {
       state[i] = THINKING;

                   // test left and right neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);

        }

dp.pickup(i);
…
Eat
…
dp.putdown(i);

Solution to Dining Philosophers (cont)

void test (int i) {
        if ( (state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING) ) {
             state[i] = EATING ;

    self[i].signal () ;
         }
 }

       initialization_code() {
       for (int i = 0; i < 5; i++)
       state[i] = THINKING;
}

}
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Java Monitors

• Every object in Java has associate with it a
single lock

• A method declared synchronized means -
calling the method means capturing the lock
for the object.

public class SimpleClass {
…

public synchronized void safeMethod() {
 …

Java Monitors

• Every object in Java has associate with it a
single lock

• A method declared synchronized means -
calling the method means capturing the lock
for the object.

public class SimpleClass {
…

public synchronized void safeMethod() {
 …

SimpleClass sc = new SimpleClass();
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Synchronization Examples

• Windows XP
• Linux
• Pthreads

Windows XP Synchronization
• Uses interrupt masks to protect access to

global resources on uniprocessor systems
• Uses spinlocks on multiprocessor systems
• Also provides dispatcher objects which may

act as either mutexes and semaphores
• Dispatcher objects may also provide events

– An event acts much like a condition
variable
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Linux Synchronization

• Linux:
– disables interrupts to implement short

critical sections

• Linux provides:
– semaphores
– spin locks

Pthreads Synchronization
• Pthreads API is OS-independent
• It provides:

– mutex locks
– condition variables

• Non-portable extensions include:
– read-write locks
– spin locks


