
1

Slide 9-1

High Level Synchronization
& Interprocess Communication

Slide 9-2Large Amount of Work to Do

2

Slide 9-3Partition the Work

Slide 9-4Define Dependencies

1A 1B

2

3A 3B

3

Slide 9-5

1A 1B

Assign Work to Threads

ThreadThread

2

3A 3B

Slide 9-6Synchronize Thread Execution

1A 1B

ThreadThread

2

3A 3B
Synchronization

Mechanism

4

Slide 9-7The Dining Philosophers

What is a possible solution?

Slide 9-8Solution 1

philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 P(fork[i]);
 P(fork[(i+1) mod 5]);
 eat();
 V(fork[(i+1) mod 5]);
 V(fork[i]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

5

Slide 9-9Solution 2
philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 j = i % 2;
 P(fork[(i+j) mod 5]);
 P(fork[(i+1-j) mod 5]);
 eat();
 V(fork[(i+1-j) mod 5]);
 V(fork[[(i+j) mod 5]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

Even man takes left, right -
odd man takes right,left

No possibility of deadlock

Slide 9-10Nesting Semaphore Operations

pr P Operation Order ps P Operation Order
P(mutex1); P(mutex2);
 P(mutex2); P(mutex1);
 <access R1>; <access R1>;
 <access R2>; <access R2>;
 V(mutex2); V(mutex1);
V(mutex1); V(mutex2);

Warning: possible deadlock

This is where the abstract software solutions come
in…

6

Slide 9-11Abstracting Semaphores

• Relatively simple problems, such as the
dining philosophers problem, can be very
difficult to solve

• Look for abstractions to simplify solutions
– AND synchronization
– Events
– Monitors
– … there are others ...

Slide 9-12AND Synchronization

• Given two resources, R1 and R2

• Some processes access R1, some R2, some
both in the same critical section

• Need to avoid deadlock due to ordering of P
operations

• Psimultaneous(S1, …, Sn)

7

Slide 9-13Simultaneous Semaphores Def
P_sim(semaphore S, int N) {
L1: if ((S[0]>=1)&& … &&(S[N-1]>=1)) {
 for(i=0; i<N; i++) S[i]--;
 } else {
 Enqueue the calling thread in the queue for the first S[i]
 where S[i]<1;
 The calling thread is blocked while it is in the queue;
 // When the thread is removed from the queue
 Goto L1;
 }
}

V_sim(semaphore S, int N) {
 for(i=0; i<N; i++) {
 S[i]++;
 Dequeue all threads in the queue for S[i];
 All such threads are now ready to run
 (but may be blocked again in Psimultaneous);
 } else {
}

Slide 9-14Simultaneous Semaphore
int R_num = 0, S_num = 0;
Queue R_wait, S_wait;
Semaphore mutex = 1;

P_sim(PID callingThread, semaphore R, semaphore S) {
L1: P(mutex);
 if(R.val>0)&&(S.val>0)) {
 P(R); P(S);
 V(mutex);
 } else {
 if(R.val==0) {
 R_num++;
 enqueue(callingThread, R_wait);
 V(mutex);
 goto L1;
 } else {
 S_num++;
 enqueue(CallingThread, S_wait);
 V(mutex);
 goto L1;
 }
 }
}

V_sim(semaphore R, semaphore S) {
 P(mutex);
 V(R); V(S);
 if(R_num>0) {
 R_num--;
 dequeue(R_wait); // Release a thread
 }
 if(S_num>0) {
 S_num--;
 dequeue(S_wait); // Release a thread
 }
 V(mutex);
}

8

Slide 9-15

Dining Philosophers Problem
philosopher(int i) {
 while(TRUE) {
 // Think
 // Eat
 Psim(fork[i], fork [(i+1) mod 5]);
 eat();
 Vsim(fork[i], fork [(i+1) mod 5]);
 }
}
semaphore fork[5] = (1,1,1,1,1);
fork(philosopher, 1, 0);
fork(philosopher, 1, 1);
fork(philosopher, 1, 2);
fork(philosopher, 1, 3);
fork(philosopher, 1, 4);

Slide 9-16Events
• Exact definition is specific to each OS
• A process can wait on an event until another

process signals the event
• Have event descriptor (“event control block”)
• Active approach

– Multiple processes can wait on an event
– Exactly one process is unblocked when a signal

occurs
– A signal with no waiting process is ignored

• May have a queue function that returns
number of processes waiting on the event

9

Slide 9-17Example
class Event {
 …
public:
 void signal();
 void wait()
 int queue();
}

shared Event topOfHour;
. . .
while(TRUE)
 if(isTopOfHour())
 while(topOfHour.queue() > 0)
 topOfHour.signal();
}
. . .

shared Event topOfHour;
. . .
// Wait until the top of the hour before proceding
topOfHour.wait();
// It’s the top of the hour ...

topOfHour

wait()

signal()

Resume

1

2

3

Slide 9-18UNIX Signals
• A UNIX signal corresponds to an event

– It is raised by one process (or hardware) to call
another process’s attention to an event

– It can be caught (or ignored) by the subject
process

• Justification for including signals was for
the OS to inform a user process of an event
– User pressed delete key
– Program tried to divide by zero
– Attempt to write to a nonexistent pipe
– etc.

10

Slide 9-19More on Signals

• Each version of UNIX has a fixed set of
signals (Linux has 31 of them)

• signal.h defines the signals in the OS
• App programs can use SIGUSR1 &
SIGUSR2 for arbitrary signalling

• Raise a signal with kill(pid, signal)
• Process can let default handler catch the

signal, catch the signal with own code, or
cause it to be ignored

Slide 9-20More on Signals (cont)

• OS signal system call
– To ignore: signal(SIG#, SIG_IGN)
– To reinstate default: signal(SIG#, SIG_DFL)
– To catch: signal(SIG#, myHandler)

• Provides a facility for writing your own
event handlers in the style of interrupt
handlers

11

Slide 9-21

Signal Handling

/* code for process p */
. . .
signal(SIG#, myHndlr);
. . .
/* ARBITRARY CODE */

void myHndlr(...) {
/* ARBITRARY CODE */
}

Slide 9-22Signal Handling

/* code for process p */
. . .
signal(SIG#, sig_hndlr);
. . .
/* ARBITRARY CODE */

void sig_hndlr(...) {
/* ARBITRARY CODE */
}

An executing process, q

Raise “SIG#” for “p”

sig_hndlr runs in
p’s address space

q is blocked

q resumes execution

12

Slide 9-23Using UNIX Signals

Pi’s Address Space

program

data

stack & heap

signal hndlr

Pi’s Execution Pj’s Execution

Pi’s Signal Handler

Slide 9-24Toy Signal Handler
#include <signal.h>
static void sig_handler(int);
int main () {
 int i, parent_pid, child_pid, status;
 if(signal(SIGUSR1, sig_handler) == SIG_ERR)
 printf(“Parent: Unable to create handler for SIGUSR1\n”);
 if(signal(SIGUSR2, sig_handler) == SIG_ERR)
 printf(“Parent: Unable to create handler for SIGUSR2\n”);
 parent_pid = getpid();
 if((child_pid = fork()) == 0) {
 kill(parent_pid, SIGUSR1);
 for (;;) pause();
 } else {
 kill(child_pid, SIGUSR2);
 printf(“Parent: Terminating child … \n”);
 kill(child_pid), SIGTERM);
 wait(&status);
 printf(“done\n”);
 }
}

13

Slide 9-25Toy Signal Handler (2)
static void sig_handler(int signo) {
 switch(signo) {
 case SIGUSR1: /* Incoming SIGUSR1 */
 printf(“Parent: Received SIGUSER1\n”);
 break;
 case SIGUSR2: /* Incoming SIGUSR2 */
 printf(“Child: Received SIGUSER2\n”);
 break;
 default: break;
 }
 return
}

Slide 9-26Monitors

• Specialized form of ADT
– Encapsulates implementation
– Public interface (types & functions)

• Only one process can be executing in the
ADT at a time monitor anADT {

 semaphore mutex = 1; // Implicit
 . . .
public:
 proc_i(…) {
 P(mutex); // Implicit
 <processing for proc_i>;
 V(mutex); // Implicit
 };
 . . .
};

14

Slide 9-27Example: Shared Balance

monitor sharedBalance {
 double balance;
public:
 credit(double amount) {balance += amount;};
 debit(double amount) {balance -= amount;};
 . . .
};

Slide 9-28Example: Readers & Writers

monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 };
 finishRead() {
 };
 startWrite() {
 };
 finishWrite() {
 };
};

reader(){
 while(TRUE) {
 . . .
 startRead();
 finishRead();
 . . .
}
fork(reader, 0);
. . .
fork(reader, 0):
fork(writer, 0);
. . .
fork(writer, 0);

writer(){
 while(TRUE) {
 . . .
 startWriter();
 finishWriter();
 . . .
}

15

Slide 9-29Example: Readers & Writers

monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 while(numberOfWriters != 0) ;
 numberOfReaders++;
 };
 finishRead() {
 numberOfReaders-;
 };

 startWrite() {
 numberOfWriters++;
 while(
 busy ||
 (numberOfReaders > 0)
) ;
 busy = TRUE;
 };
 finishWrite() {
 numberOfWriters--;
 busy = FALSE;
 };
};

Slide 9-30

Example: Readers & Writers
monitor readerWriter_1 {
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = FALSE;
public:
 startRead() {
 while(numberOfWriters != 0) ;
 numberOfReaders++;
 };
 finishRead() {
 numberOfReaders--;
 };

 startWrite() {
 numberOfWriters++;
 while(
 busy ||
 (numberOfReaders > 0)
) ;
 busy = TRUE;
 };
 finishWrite() {
 numberOfWriters--;
 busy = FALSE;
 };
};

•Deadlock can happen

16

Slide 9-31Sometimes Need to Suspend

• Process obtains monitor, but detects a
condition for which it needs to wait

• Want special mechanism to suspend until
condition is met, then resume
– Process that makes condition true must exit

monitor
– Suspended process then resumes

• Condition Variable

Slide 9-32Condition Variables

• Essentially an event (as defined previously)
• Occurs only inside a monitor
• Operations to manipulate condition variable

– wait: Suspend invoking process until another
executes a signal

– signal: Resume one process if any are
suspended, otherwise do nothing

– queue: Return TRUE if there is at least one
process suspended on the condition variable

17

Slide 9-33Active vs Passive signal

• Hoare semantics: same as active semaphore
– p0 executes signal while p1 is waiting ⇒ p0

yields the monitor to p1

– The signal is only TRUE the instant it happens
• Brinch Hansen (“Mesa”) semantics: same as

passive semaphore
– p0 executes signal while p1 is waiting ⇒ p0

continues to execute, then when p0 exits the
monitor p1 can receive the signal

– Used in the Xerox Mesa implementation

Slide 9-34Hoare vs Mesa Semantics

• Hoare semantics:

• Mesa semantics:

. . .
if(resourceNotAvailable()) resourceCondition.wait();
/* now available … continue … */
. . .

. . .
while(resourceNotAvailable()) resourceCondition.wait();
/* now available … continue … */
. . .

18

Slide 9-35

2nd Try at Readers & Writers
monitor readerWriter_2 {
 int numberOfReaders = 0;
 boolean busy = FALSE;
 condition okToRead, okToWrite;
public:
 startRead() {
 if(busy || (okToWrite.queue())
 okToRead.wait();
 numberOfReaders++;
 okToRead.signal();
 };
 finishRead() {
 numberOfReaders--;
 if(numberOfReaders == 0)
 okToWrite.signal();
 };

 startWrite() {
 if((numberOfReaders != 0)
 || busy)
 okToWrite.wait();
 busy = TRUE;
 };
 finishWrite() {
 busy = FALSE;
 if(okToRead.queue())
 okToRead.signal()
 else
 okToWrite.signal()
 };
};

Slide 9-36Example: Synchronizing Traffic

• One-way tunnel
• Can only use

tunnel if no
oncoming traffic

• OK to use
tunnel if traffic
is already
flowing the right
way

19

Slide 9-37Example: Synchronizing Traffic
monitor tunnel {
 int northbound = 0, southbound = 0;
 trafficSignal nbSignal = RED, sbSignal = GREEN;
 condition busy;
public:
 nbArrival() {
 if(southbound > 0) busy.wait();
 northbound++;
 nbSignal = GREEN; sbSignal = RED;
 };
 sbArrival() {
 if(northbound > 0) busy.wait();
 southbound++;
 nbSignal = RED; sbSignal = GREEN;
 };
 depart(Direction exit) (
 if(exit = NORTH {
 northbound--;
 if(northbound == 0) while(busy.queue()) busy.signal();
 else if(exit == SOUTH) {
 southbound--;
 if(southbound == 0) while(busy.queue()) busy.signal();
 }
 }
}

Slide 9-38

Dining Philosophers … again ...
#define N ___
enum status(EATING, HUNGRY, THINKING};
monitor diningPhilosophers {
 status state[N];
 condition self[N];
 test(int i) {
 if((state[(i-1) mod N] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i+1) mod N] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 }
 };
public:
 diningPhilosophers() { // Initilization
 for(int i = 0; i < N; i++) state[i] = THINKING;
 };

20

Slide 9-39Dining Philosophers … again ...
test(int i) {
 if((state[(i-1) mod N] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i+1) mod N] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 };
 };
public:
 diningPhilosophers() {...};
 pickUpForks(int i) {
 state[i] = HUNGRY;
 test(i);
 if(state[i] != EATING) self[i].wait();
 };
 putDownForks(int i) {
 state[i] = THINKING;
 test((i-1) mod N);
 test((i+1) mod N);
 };
}

Slide 9-40Experience with Monitors

• Danger of deadlock with nested calls
• Monitors were implemented in Mesa

– Used Brinch Hansen semantics
– Nested monitor calls are, in fact, a problem
– Difficult to get the right behavior with these

semantics
– Needed timeouts, aborts, etc.

21

Slide 9-41Interprocess Communication (IPC)

• Different processes - no shared memory space
• IPC - a way for different processes to

communicate even if they exist on different
machines

• OS copies info from sending process’ memory
space to receiving process’ memory space

Slide 9-42

IPC Mechanisms

Info to be
shared

Info copy
Message

 OS IPC
Mechanism

• Must bypass memory protection mechanism
for local copies

• Must be able to use a network for remote
copies

Address Space for p0 Address Space for p1

22

Slide 9-43Refined IPC Mechanism

• Spontaneous changes to p1’s address space
• Avoid through the use of mailboxes

Info to be
shared Info copy

Address Space for p0 Address Space for p1

MessageMessageMessage

Mailbox for p1

send function receive function
OS Interface

send(… p1, …); receive(…);

Slide 9-44

Refined IPC Mechanism
• OS manages the mailbox space
• More secure message system

Info to be
shared Info copy

Address Space for p0 Address Space for p1

MessageMessageMessage

Mailbox for p1

send function receive function

OS Interface
send(… p1, …); receive(…);

23

Slide 9-45

Interprocess Communication (IPC)
• Signals, semaphores, etc. do not pass

information from one process to another
• Monitors support information sharing, but

only through shared memory in the monitor
• There may be no shared memory

– OS does not support it
– Processes are on different machines on a

network
• Can use messages to pass info while

synchronizing

Slide 9-46Message Protocols

• Sender transmits a set of bits to receiver
– How does the sender know when the receiver is

ready (or when the receiver obtained the info)?
– How does the receiver know how to interpret

the info?
– Need a protocol for communication

• Standard “envelope” for containing the info
• Standard header

• A message system specifies the protocols

24

Slide 9-47Transmit Operations

• Asynchronous send:
– Delivers message to receiver’s mailbox
– Continues execution
– No feedback on when (or if) info was delivered

• Synchronous send:
– Goal is to block sender until message is

received by a process
• Variant sometimes used in networks: Until the

message is in the mailbox

Slide 9-48Receive Operation

• Blocking receive:
– Return the first message in the mailbox
– If there is no message in mailbox, block the

receiver until one arrives
• Nonblocking receive:

– Return the first message in the mailbox
– If there is no message in mailbox, return with

an indication to that effect

25

Slide 9-49Synchronized IPC

/* signal p2 */
syncSend(message1, p2);
<waiting …>;
/* wait for signal from p2 */
blockReceive(msgBuff, &from);

Code for p1 Code for p2

/* wait for signal from p1 */
blockReceive(msgBuff, &from);
<process message>;
/* signal p1 */
syncSend(message2, p1);

syncSend(…)

syncSend(…)

blockReceive(…)

blockReceive(…)

Slide 9-50

Asynchronous IPC

/* signal p2 */
asyncSend(message1, p2);
<other processing>;
/* wait for signal from p2 */
while(!nbReceive(&msg, &from));

Code for p1 Code for p2

/* test for signal from p1 */
if(nbReceive(&msg, &from)) {
 <process message>;
 asyncSend(message2, p1);
}else<
 <other processing>;
}

asyncSend(…)

asyncSend(…)

nonblockReceive(…)

nonblockReceive(…)

nonblockReceive(…)

nonblockReceive(…)

26

Slide 9-51UNIX Pipes

Info to be
shared Info copy

Address Space for p1

pipe for p1 and p2

write function read function

System Call Interface
write(pipe[1], …); read(pipe[0]);

Slide 9-52UNIX Pipes (cont)

• The pipe interface is intended to look like a
file interface
– Analog of open is to create the pipe
– File read/write system calls are used to

send/receive information on the pipe
• What is going on here?

– Kernel creates a buffer when pipe is created
– Processes can read/write into/out of their

address spaces from/to the buffer
– Processes just need a handle to the buffer

27

Slide 9-53

UNIX Pipes (cont)
• File handles are copied on fork
• … so are pipe handles

int pipeID[2];
. . .
pipe(pipeID);
. . .
if(fork() == 0) { /* the child */
 . . .
 read(pipeID[0], childBuf, len);
 <process the message>;
 . . .
} else { /* the parent */
 . . .
 write(pipeID[1], msgToChild, len);
 . . .
}

Slide 9-54UNIX Pipes (cont)
• The normal write is an asynchronous op

(that notifies of write errors)
• The normal read is a blocking read
• The read operation can be nonblocking

#include <sys/ioctl.h>
. . .
int pipeID[2];
. . .
pipe(pipeID);
ioctl(pipeID[0], FIONBIO, &on);
. . .
read(pipeID[0], buffer, len);
if(errno != EWOULDBLOCK) {
 /* no data */
} else { /* have data */

28

Slide 9-55Source, Filter and Sink Processes

Source SinkFilter

Slide 9-56Information Flow Through UNIX Pipes

Info to be
shared Info copy

Address Space for p1

pipe for p1 and p2

write function read function

System Call Interface
write(pipe[1], …); read(pipe[0]);

