
1

File-System Implementation

Gordon College
Stephen Brinton

File-System (FS) Structure

• File System
– used to place structure on the disk

• efficient and convenient access to data on disk
– 2 design problems:

o Define how file system should look to user
o Create algorithm & data structures to map

logical onto physical FS

2

Layered File System
File system composed of many
different layers.
I/O control – device drivers and interrupt handlers.
Input is “high-level” commands like “retrieve block
123” and the output is low-level commands to the
devices. (places values in registers and device
controllerʼs memory)

File-organization module – knows about the file
allocation scheme. Therefore it translates a logical
block into the addressing for a physical block. (free-
space manager)

Logical file system – manages the metadata
information. (file-control block)

Many different file systems used today – UFS, EXT, FAT, NTFS, etc.

What structures are needed on disk?

What info? How to boot the OS on disk, block total, # and location
of free blocks, directory structure, and the files.

• Boot control block (per volume) – called boot block (UFS) and
partition boot sector (NTFS). Typically first block of volume.

• Volume control block (per volume) – contains the volume or
partition details. called superblock (UFS) and master file table
(NTFS).

• Directory structure (per file system) – organize the files.
• File Control block (per file) – details
 about the file (including permissions,
 size, location of data blocks)

Typical file-control block

3

How about the in-memory structures?

1. mount table – info about each mounted volume

2. directory-structure cache – info about recently accessed
directories

3. system-wide open-file table – copy of FCB of each open file

4. per-process open-file table – a pointer to the appropriate entry
in the system-wide open-file table

How about the in-memory structures?

• What happens when a file is opened or
read?

File open

File read

4

How do you put multiple file
systems on a system?

• Virtual File Systems (VFS)
provide an object-oriented
way of implementing file
systems.

• VFS allows the same
system call interface (the
API) to be used for different
types of file systems.

• The API is sent to the VFS
interface, rather than any
specific type of file system.

What is the best directory implementation?

• Linear list of file names with pointer to the
data blocks.
– simple to program
– time-consuming to execute (linear search)
– better to use a B-tree?

• Hash Table – linear list with hash data
structure.
– decreases directory search time
– collisions – situations where two file names hash

to the same location
– fixed size (depends on the hash function for a

particular size)
• Solution – use chaining

5

How are disk blocks allocated for files?

Consideration: speed of file access and
effective use of disk space

Possible methods:
o Contiguous allocation
o Linked allocation
o Indexed allocation

How does contiguous allocation work?

• Each file occupies a set of
contiguous blocks on the disk

• Simple – only starting
location (block #) and length
(number of blocks) are
required

• Minimal disk head movement
• Random access
• Wasteful of space (dynamic

storage-allocation problem)
• Files cannot grow

– Allocate enough space
when file is first created

– Program quits and file is
allocated more space

– Find larger hole and copy
file over to it.

6

Extent-Based Systems
• Many newer file systems (I.e. Veritas File

System) use a modified contiguous allocation
scheme
– An extent is a contiguous area of storage in a

computer file system
– A file consists of one or more extents.
– Extent-based file systems allocate disk blocks in

extents
• How do you use extents?

– Initial disk chunk is set aside for program
– If more disk space needed – allocate an extent

How does linked allocation work?

• Each file is a linked list of
disk blocks: blocks may be
scattered anywhere on the
disk.

• Create File: new entry in
directory with NULL pointer

• Disadvantages:
– only effectively handles

sequential access files.
– Space required for

pointers.
• Solution: collect

blocks into clusters
• More internal frag.

– Reliability – link is bad

7

What’s an important variation on the
linked allocation method?

File-Allocation Table (FAT)File-Allocation Table (FAT)

- efficient random-access- efficient random-access

- can have significant number- can have significant number
of disk head seeksof disk head seeks

“The FAT file system is considered
relatively uncomplicated, and is
consequently supported by virtually all
existing operating systems for personal
computers. This ubiquity makes it an ideal
format for floppy disks and solid-state
memory cards, and a convenient way of
sharing data between disparate operating
systems installed on the same computer
(a multiboot environment).” WikiPedia

Indexed Allocation
• Brings all pointers together into

the index block. (each file has its
own index block)

• Indexblock[i] = pointer to ith block
of file

• Supports direct access without
external fragmentation

index table

Logical view
Larger File Schemes
1. Linked Scheme
2. Multilevel index
3. Combined Scheme

8

Indexed Allocation
• Solves the problem of linked allocation by

bringing all the pointers together into one
location: index block

• New file – index block has all NULL pointers
• Write – obtain block from free-space manager

and place address into index block

• Wasted space – index block – How large
should the index block be?

• SIZE – normally one block long – with a
possible link to another block if needed.

Indexed Allocation
Larger File Schemes
1. Linked Scheme – last address in index

block points to another index block
2. Multilevel index – first level index block

points to a set of second level index
blocks which point to files (4BG) (see
next page)

3. Combined Scheme – both of the above
(see page after the next page)

9

What is a multilevel index?

M

outer-index

index table file

What is a combined scheme?

UNIX (4K bytes per block)UNIX (4K bytes per block)

Keep some pointers
that point directly to
block

Indirect pointers

Inode

The term i-node perhaps
came from the word
index?

10

How is free-space managed?

• Bit vector (n blocks) …
0 1 2 n-1

bit[i] =

6
7
8 0 ⇒ block[i] free

1 ⇒ block[i] occupied

Block number calculation (which block is the bit found in?)

(number of bits per word) * (number of 0-value words) + offset of first 1 bit

Simple and can be a
fairly efficient search

Some
processors
have an
instruction
that return
the offset in a
word for the
first bit with
value 1

00
1

8 * 5 + 7 = 47 (block 47 is free)

How is free-space managed?
• Bit map requires extra space

– Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

• Easy to get contiguous files

How else is free-space managed?
• Linked list (free list) see right 

– Traversing is costly (must read each block)
– No waste of space

• Grouping (store addresses of n free blocks in 1st block)
• Counting (keep address and count of blocks in free list)

11

What about efficiency and performance?

• Efficiency dependents on:
– disk allocation and directory algorithms

• preallocate inode and strategically spread across disk
– types of data kept in file’s directory entry (ie. modify date)

• Performance
– disk cache – for frequently used blocks

• Disk controller cache (store tracks), memory cache (store
blocks)

• Main memory – buffer cache or page cache
– free-behind and read-ahead – techniques to optimize

sequential access
– improve PC performance by dedicating section of memory

as virtual disk, or RAM disk

Page Cache
• A page cache caches pages

rather than disk blocks using
virtual memory techniques

• Memory-mapped I/O uses a
page cache

• Routine I/O through the file
system uses the buffer (disk)
cache

Without a unified buffer cache

Double Caching
1. read() brings block into buffer cache
2. block is copied to page cache

Waste memory & CPU/IO cycles
Inconsistencies - corrupt files

1

2

12

Unified Buffer Cache

• A unified buffer cache uses the same
page cache to cache both memory-
mapped pages and ordinary file system
I/O

How can we recover critical
directory data?

• Consistency checking – compares data in
directory structure with data blocks on disk,
and tries to fix inconsistencies
(chkdsk – MSDOS or fsck – UNIX)

• Use system programs to back up data from
disk to another storage device (floppy disk,
magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data
from backup

13

Log Structured File Systems
• Log structured (or journaling) file systems record each update

to the file system as a transaction

• All transactions are written to a log
– A transaction is considered committed once it is written to

the log
– However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file
system
– When the file system is modified, the transaction is removed

from the log

• If the file system crashes, all remaining transactions in the log
must still be performed

What is NFS?

• A distributed file system which allows a
computer to access files over a network as
easily as if they were on its local disks

• Originally designed as a stateless protocol
using an unreliable datagram protocol
(UDP/IP protocol) however today you can
choose either UDP or TCP

14

What is NFS?
• Interconnected workstations viewed as a set of independent

machines with independent file systems, which allows sharing
among these file systems in a transparent manner
– A remote directory is mounted over a local file system

directory
– Specification of the remote directory for the mount operation

is nontransparent; the host name of the remote directory has
to be provided

• Files in the remote directory can then be accessed in a
transparent manner

– Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

What is NFS?
• NFS is designed to operate in a

heterogeneous environment of different
machines, operating systems, and network
architectures; the NFS specifications
independent of these media

• This independence is achieved through the
use of RPC primitives built on top of an
External Data Representation (XDR)
protocol used between two
implementation-independent interfaces

15

Mounting in NFS

Cascading mountsMounts

mount S1:/user/shared /usr/local

NFS Mount Protocol
• Establishes initial logical connection between server and client
• Mount operation

– Mount request is mapped to corresponding RPC and
forwarded to mount server running on server machine

– Export list – specifies local file systems that server exports
and names of machines that are permitted to mount them

• the server returns a file handle
• File handle – a file-system identifier, and an inode number to

identify the mounted directory within the exported file system
• changes only the user’s view and does not affect the server side

16

NFS Protocol
• A set of remote procedure calls for remote file operations:

– searching for a file
– reading a set of directory entries
– manipulating links and directories
– accessing file attributes
– reading and writing files

• NFS servers are stateless; each request has to provide a full
set of arguments
(however NFS V4 is just coming available – very different,
stateful)

• Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

• The NFS protocol does not provide concurrency-control
mechanisms

Three Major Layers of NFS Architecture

o UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

o Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according
to their file-system types
o The VFS activates file-system-specific operations to handle

local requests according to their file-system types
o Calls the NFS protocol procedures for remote requests

o NFS service layer – bottom layer of the architecture
o Implements the NFS protocol

17

Schematic View of NFS
Architecture

NFS Path-Name Translation

• Performed by breaking the path into
component names and performing a separate
NFS lookup call for every pair of component
name and directory vnode

• To make lookup faster, a directory name
lookup cache on the client’s side holds the
vnodes for remote directory names

18

NFS Remote Operations
• Nearly one-to-one correspondence between regular UNIX

system calls and the NFS protocol RPCs (except opening and
closing files)

• NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance
– File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached
attributes

• Cached file blocks are used only if the corresponding cached
attributes are up to date

– File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

Example: WAFL File System

• Used on Network Appliance “Filers” –
distributed file system appliances

• “Write-anywhere file layout”
• Serves up NFS, CIFS, http, ftp
• Random I/O optimized, write optimized

– NVRAM for write caching
• Similar to Berkeley Fast File System,

with extensive modifications

