Implementing
Processes, Threads,
and Resources

Implementing the Process Abstraction

P,CPU P,CPU P, CPU
L1 L1 L1
— — —
Ideal I | || —— [—
Abstracti
. LN)
S_ I'aC.lOl’l. P; Executable P; Executable P, Executable
As if using Memory Memory Memory
an .
OS interface
Actual
machine 0S Address | &
CPU Space g
J| P;Address =
ALU Space _%’
<
| P Address é
tra—= Space %’
it— eee [O
P; Address %
................ Space §

Slide 6-2

Modern process

“The value of the modern process model is that it enables
the programmer to design software so that various parts
of the computation can work together as a set of threads
within a single modern process framework.”

Classic process can work together but they do not
share a customized computational framework

Slide 6-3

External View of the Process Manager

Application
Program

()/

fork CreateThread()

- CloseHandle () CreateProcess ()
walt
exec () WaitForSingleObject ()
V4 V4
- =
L, Bo o o B S & =
s = = B s = = B
s 2 = s g &=
S 9 S w 2 8 S 2
4 Kl 2 & EE
= 9 = 2
SRR~ ol B

UNIX \ / Windows

Hardware

Slide 6-4

Process Manager Responsibilities Slde s

Define & implement the essential characteristics of a
process and thread

— Algorithms to define the behavior
— Data structures to preserve the state of the execution

Define what “things” threads in the process can reference —
the address space (most of the “things” are memory
locations)

Manage the resources used by the processes/threads
Tools to create/destroy/manipulate processes & threads

Tools to time-multiplex the CPU — Scheduling the
(Chapter 7)

Tools to allow threads to synchronization the operation
with one another (Chapters 8-9)

Mechanisms to handle deadlock (Chapter 10)
Mechanisms to handle protection (Chapter 14)

Modern Processes and Threads — ****

Thrd, in P, Thrd, in P,

—
—

1l
1]

D L
i

T
Il
T
Il
1
Il

OS interface

1l
1]

Modern Threads

User Space Threads - underlying Os implements classic
processes and the user space thread library executes on
top of the OS abstract machine to multiprogram the
threads. (Mach C and POSIX threads)

Kernel Threads - OS time-multiplexes the execution of
threads instead of processes. Therefore when one
thread blocks the other threads can still execute.
(Windows)

Slide 6-7

Resources

Any element of the abstract machine that a process can
request and can cause the process to be blocked if not
available.

If device is allocated to a process then it is configured into
the abstract machine for process

Multiple resource managers - hardware devices, processor,
abstract synch resources, primary memory, and files

Each resource manager must present a common behavior
described by a general model

Slide 6-8

Processes & Threads

State

Stack

— Map

Slide 6-9

The Address Space

Address Address Executable
Space Binding Memory

}7
Crrocess),)4 } R
}

e

vy

|

A 4

—

> Other objec

Slide 6-10

Slide 6-11

Building the Address Space

» Some parts are built into the environment
— Files
— System services
» Some parts are imported at runtime
— Mailboxes
— Network connections

» Memory addresses are created at compile
(and run) time

The OS

» Abstract machine interface

— Host hardware instruction set and set of
functions exported by OS

» Unix and Windows most widely used
» Unix - POSIX interface (standard)

Slide 6-13

Modern Process Framework

» Thread-based computation is executed within this
framework

* Modern Process structure
— Address space
— Program
— Data - shared by threads

— Resources

¢ Threads share the resources that have been allocated to the
process

— Process Id

Thre ads Slide 6-14

» Active Element
e Threads

— Host process environment
— Thread-specific data (at least a stack)
— Thread ID

Tracing the Hardware Process

Machine is Bootstap Process Interrupt
Powered up P |
Loader Manager Handler 't 2 n
Load the kernel ==~ | --’l
Initialization ----------—-f-—-- BN
EXeCute a thread' ______________ -:_ —:;__4 — -—_’I
Schedule --=====222227277) - 1-y I LN)

Hardware process progress

Slide 6-15

v
The Abstract Machine Interface Slide 6-16
Application Program
Abstract Machine Instructions
[
] Trap —]
Instruction — fork()
User Mode
Instructions open() create()
E 0S

VDN

X

(

~

User Mode
Instructions

Supervisor Mode
Instructions

Slide 6-17

Abstract Machine Instruction Set

ALU - load, store, add...
Control Unit - branch, procedure call...
Trap - create process(), open_file()...

Linux 2.4x
- exports over 200 functions
- 2.5 million lines of code

Windows NT/2000/XP
- exports over 2,000 functions
- over 25 million lines of code

Slide 6-18

Context Switching

Executable Memory

Initialization——— Pprocess

Manager ‘
. @
nterrupt

Interrupt
Handler

P,

P,

Process Descriptors

» OS creates/manages process abstraction

Slide 6-19

 Descriptor is data structure for each process

— Register values

— Logical state

— Type & location of resources it holds
— List of resources it needs

— Security keys

— Process ID, parent process

Creating a Process in UNIX

pid = fork() E))

[UNIX kernel

Process Table v

Process Descriptor

Slide 6-20

10

Linux Process Descriptor

state
thread_info
usage

flags

un_list

tasks

real_parent

parent

tty

thread
fs
files

signal
pending

task_struct

Slide 6-21

thread_info

.................................. -
Low-level information
for the process

mm_struct
>

e POl to Memary
DIR areadesciplors

y_struct

.
El thy associated with the process

fs_struct
-

Current directory

files_struct
-

el Pinters o file
ok desciptors

signal_struct
-

Signals received

Linux Process Descriptor

Slide 6-22

001 b it
1 5000
Process
(1572878 Descriptor
T e ot [
Dh015fa034 Y RS
)] 5F3000 :____(_””Fm____

11

Slide 6-23

Linux Process Descriptor

data structure 1 data structure 2 data structure 3
\ list_head list_head list_head
list head > next — |—= qnext — |—> next =
next —J ‘— prev prev prev

prev

{a} adoubly linked listed with three elements

R —}
list_head

(b} an empty doubly linked list next ——
prev
Windows NT Process Descriptor Side 624
EPROCESS

/‘\iKPROCESS

uint32 KernelTime;
uint32 UserTime;

Byte state;

void *UniqueProcessId;

NT Kernel handles object management, interrupt handing, thread scheduling

NT Executive handles all other aspect of a process

12

Slide 6-25

Windows NT Process Descriptor (2)

* Kernel process object includes:
* Pointer to the page directory
* Kernel & user time
* Process base priority
* Process state

* List of the Kernel thread descriptors that are
using this process

Slide 6-26

Windows NT Process Descriptor (3)

* Parent identification

* Exit status

* (Creation and termination times.
* Memory status

* Security information

* executable image

* Process priority class used by the thread
scheduler.

* A list of handles used by this process
* A pointer to Win32-specific information

13

Windows NT Thread Descriptor Stide 627

EPROCESS

KPROCESS

*ETHREAD

J KTHREAD

Slide 6-28

Creating a Process in NT

CreateProcess(..); E))

(Win32 Subsystem]
ntCreateProcess(...) ;}
ntCreateThread(...) ; E&

NT Executive]
Handle Table V

- [NT Kernel J

Process Descriptor

14

Slide 6-29

Windows NT Handles

Application

[Handle |

User Space

Supervisor Space

Executive Object
- NT Executive

Slide 6-30

Thread Abstraction

Process Manager has algorithms to control threads and
thread descriptor (data structure) to keep track of threads.

Management Tasks
- Create/destroy thread
- Allocate thread-specific resources
- Manage thread context switching

Thread Descriptor

- state

- execution stats

- process (reference to associated process)
- list of related threads

- stack (reference to stack)

- thread-specific resources

15

Slide 6-31

State of a Process/Thread

State Variable - summary status of the process/thread which
is located in descriptor

Request Simple State Diagram

Running

Schedule

Allocate Start

Blocked Ready
UNIX State Transition Diagram Stide 6-32
Request
Wait by n
¢ one
ML Running
ZombleRequest Schedule
Sleeping I/QY Requgst
O Allocate Start
Runnable
79 Pleg Resume
Uninterruptible Traced or Stopped
Sleep

16

Slide 6-33

Windows NT Thread States

CreateThread

Terminated e 1
Reinitialize Initialized

>

Activate

Dispatch

Waiting

T Wait Completd

Wait Complete
Transitio

Dispatch

Ready

Preempt

Standby

Slide 6-34

Resources

Resource: Anything that a process can request and then
become blocked because that thing is not available.

Resource Descriptors
- Internal resource name
- Total Units
- Available Units
- List of available units
- List of Blocked processes

17

Slide 6-35

Resources

R={R; |0 =) <m} =resource types
C={c;20|V RER (0 =<j<m)} = units of R, available

Reusable resource: After a unit of the resource has been
allocated, it must ultimately be released back to the
system. E.g., CPU, primary memory, disk space, ... The
maximum value for g is the number of units of that
resource

Consumable resource: There is no need to release a
resource after it has been acquired. E.g., a message,
input data, ... Notice that ¢; is unbounded.

. Slide 6-36
Using the Model
* There is a resource manager, Mgr(R;) for every R;
* Process p; can request units of R; if it is currently running
p; can only request n; < ¢; units of reusable R;
p; can request unbounded # of units of consumable R;

*Mgr(R)) can allocate units of R; to p;

1 MeR)

allocate

request

18

A Generic Resource Manager Stide 6-37
Resource Manager
Blocked Processes
Resource Pool
Slide 6-38

Process Hierarchies

Initial Process

System Other

Process Processes
System

Process

19

Slide 6-39

Process Hierarchies

 Parent-child relationship may be significant:
parent controls children’s execution

Suspend Start

= Activate

Allocate
Suspend >

Ready-Suspended
Allocate

Blocked-Suspended

Blocked-Active

Activate

Slide 6-40

Process Manager Overview

Program 4@

A 4

| Abstract Computing Environment

File Deadlock Process
Manager Description

‘ ‘ | Synchronization |
Device = Memory
Manager = Manager Scheduler Resource
Manager

Dev‘ices | | Me‘rnory| | CIgU | Other H/@

20

Slide 6-41

UNIX Organization

Libraries

System Call Interface

File Deadlock Process
Manager Description

| Synchronization |
Device . Memory
Manager . Manager Scheduler Resource
Monalithic Kerngl Manager

Devices | | Memory | | CI"U | Other H/@

User

Slide 6-42

Windows NT Organization

| Subsystem ’ ‘ Subsystem ’ Subsystem ’

Libraries

NT Executive

NT Kernel I/O Subsystem
t—l Hardware Abstraction Layer A_J

Processor(s) Main Memory Devices

21

