
1

Slide 6-1

Implementing
Processes, Threads,

and Resources

Slide 6-2

OS Address
Space

Implementing the Process Abstraction

Control
Unit

OS interface

…

M
ac

hi
ne

 E
xe

cu
ta

bl
e

M
em

or
y

ALU

CPU
Pi Address

Space

Pi CPU

Pi Executable
Memory

Pk Address
Space

…

Pk CPU

Pk Executable
Memory

Pj Address
Space

Pj CPU

Pj Executable
Memory

Ideal
Abstraction:
As if using
an
Actual
machine

2

Slide 6-3Modern process

“The value of the modern process model is that it enables
the programmer to design software so that various parts
of the computation can work together as a set of threads
within a single modern process framework.”

Classic process can work together but they do not
share a customized computational framework

Slide 6-4External View of the Process Manager

Hardware

Application
Program

D
ev

ic
e

M
gr

Pr
oc

es
s M

gr
M

em
or

y
M

gr
Fi

le
 M

gr

UNIX

D
ev

ic
e

M
gr

Pr
oc

es
s M

gr
M

em
or

y
M

gr
Fi

le
 M

gr

Windows

CreateThread()
CreateProcess()CloseHandle()

WaitForSingleObject()

fork()

exec()wait()

3

Slide 6-5Process Manager Responsibilities

• Define & implement the essential characteristics of a
process and thread
– Algorithms to define the behavior
– Data structures to preserve the state of the execution

• Define what “things” threads in the process can reference –
the address space (most of the “things” are memory
locations)

• Manage the resources used by the processes/threads
• Tools to create/destroy/manipulate processes & threads
• Tools to time-multiplex the CPU – Scheduling the

(Chapter 7)
• Tools to allow threads to synchronization the operation

with one another (Chapters 8-9)
• Mechanisms to handle deadlock (Chapter 10)
• Mechanisms to handle protection (Chapter 14)

Slide 6-6Modern Processes and Threads

OS interface

…

…

…
Pi CPU

Thrdj in Pi Thrdk in Pi

…

4

Slide 6-7Modern Threads

User Space Threads - underlying Os implements classic
processes and the user space thread library executes on
top of the OS abstract machine to multiprogram the
threads. (Mach C and POSIX threads)

Kernel Threads - OS time-multiplexes the execution of
threads instead of processes. Therefore when one
thread blocks the other threads can still execute.
(Windows)

Slide 6-8Resources
Any element of the abstract machine that a process can
request and can cause the process to be blocked if not
available.

If device is allocated to a process then it is configured into
the abstract machine for process

Multiple resource managers - hardware devices, processor,
abstract synch resources, primary memory, and files

Each resource manager must present a common behavior
described by a general model

5

Slide 6-9Processes &Threads

A
dd

re
ss

 S
pa

ce

Map

St
ac

k

State

Pr
og

ra
m

St
at

ic
 d

at
a

R
es

ou
rc

es

St
ac

k

State

Map

Slide 6-10The Address Space

Process

Address
Space

Address
Binding

Executable
Memory

Other objects

Files

6

Slide 6-11Building the Address Space

• Some parts are built into the environment
– Files
– System services

• Some parts are imported at runtime
– Mailboxes
– Network connections

• Memory addresses are created at compile
(and run) time

Slide 6-12The OS

• Abstract machine interface
– Host hardware instruction set and set of

functions exported by OS
• Unix and Windows most widely used
• Unix - POSIX interface (standard)

7

Slide 6-13Modern Process Framework

• Thread-based computation is executed within this
framework

• Modern Process structure
– Address space
– Program
– Data - shared by threads
– Resources

• Threads share the resources that have been allocated to the
process

– Process Id

Slide 6-14Threads

• Active Element
• Threads

– Host process environment
– Thread-specific data (at least a stack)
– Thread ID

8

Slide 6-15

Tracing the Hardware Process

Bootstap
Loader

Process
Manager

Interrupt
Handler P1 P,2 Pn

…

Machine is
Powered up

Initialization
Load the kernel

Service an interrupt

H
ar

dw
ar

e
pr

oc
es

s p
ro

gr
es

s

Execute a thread
Schedule

Slide 6-16The Abstract Machine Interface

User Mode
Instructions

Application Program

User Mode
Instructions

Abstract Machine Instructions

Trap
Instruction

Supervisor Mode
Instructions

fork()

create()open()

OS

9

Slide 6-17Abstract Machine Instruction Set
ALU - load, store, add…
Control Unit - branch, procedure_call…
Trap - create_process(), open_file()…

Linux 2.4x
- exports over 200 functions
- 2.5 million lines of code

Windows NT/2000/XP
- exports over 2,000 functions
- over 25 million lines of code

Slide 6-18Context Switching

Process
Manager

Interrupt
Handler

P1

P2

Pn

Executable Memory

Initialization 1

2
3

4
5

7
Interrupt

8

9

6

10

Slide 6-19Process Descriptors
• OS creates/manages process abstraction
• Descriptor is data structure for each process

– Register values
– Logical state
– Type & location of resources it holds
– List of resources it needs
– Security keys
– Process ID, parent process

Slide 6-20Creating a Process in UNIX

pid = fork();

UNIX kernel

…

Process Table

Process Descriptor

11

Slide 6-21Linux Process Descriptor

Slide 6-22Linux Process Descriptor

12

Slide 6-23Linux Process Descriptor

Slide 6-24

EPROCESS

…
void *UniqueProcessId;
…

NT Executive

Windows NT Process Descriptor
KPROCESS
…
uint32 KernelTime;
uint32 UserTime;
…
Byte state;

NT Kernel

NT Kernel handles object management, interrupt handing, thread scheduling
NT Executive handles all other aspect of a process

13

Slide 6-25Windows NT Process Descriptor (2)

• Kernel process object includes:
• Pointer to the page directory
• Kernel & user time
• Process base priority
• Process state
• List of the Kernel thread descriptors that are

using this process

Slide 6-26Windows NT Process Descriptor (3)

• Parent identification
• Exit status
• Creation and termination times.
• Memory status
• Security information
• executable image
• Process priority class used by the thread

scheduler.
• A list of handles used by this process
• A pointer to Win32-specific information

14

Slide 6-27

ETHREAD

Windows NT Thread Descriptor
EPROCESS
KPROCESS

NT Kernel
KTHREAD

NT Executive

Slide 6-28Creating a Process in NT
CreateProcess(…);

Win32 Subsystem

ntCreateProcess(…);
…
ntCreateThread(…);

NT Executive

NT Kernel
…

Handle Table

Process Descriptor

15

Slide 6-29Windows NT Handles

Application

Kernel

Object

Executive Object

User Space

Supervisor Space

NT Executive

NT Kernel

Handle

Slide 6-30Thread Abstraction
Process Manager has algorithms to control threads and
thread descriptor (data structure) to keep track of threads.

Management Tasks
- Create/destroy thread
- Allocate thread-specific resources
- Manage thread context switching

Thread Descriptor
- state
- execution stats
- process (reference to associated process)
- list of related threads
- stack (reference to stack)
- thread-specific resources

16

Slide 6-31State of a Process/Thread
State Variable - summary status of the process/thread which
is located in descriptor

ReadyBlocked

Running

Start

Schedule

Request

Done

Request

Allocate

Simple State Diagram

Slide 6-32UNIX State Transition Diagram

Runnable

Uninterruptible
Sleep

Running

Start

Schedule

Request

Done

I/O Request
Allocate

zombie

Wait by
parent

Sleeping

Traced or Stopped

Request

I/O Complete Resume

17

Slide 6-33Windows NT Thread States

Initialized

CreateThread

Ready

Activate

Se
le

ct

Standby

Running

Terminated

Waiting

Transition

Reinitialize

Exit

Pr
ee

m
pt

Dispatch

Wait
Wait Complete

Wait Complete

Dispatch

Slide 6-34Resources
Resource: Anything that a process can request and then
become blocked because that thing is not available.

Resource Descriptors
- Internal resource name
- Total Units
- Available Units
- List of available units
- List of Blocked processes

18

Slide 6-35Resources

R = {Rj | 0 ≤ j < m} = resource types
C = {cj ≥ 0 | ∀ Rj∈R (0 ≤ j < m)} = units of Rj available

Reusable resource: After a unit of the resource has been
allocated, it must ultimately be released back to the
system. E.g., CPU, primary memory, disk space, … The
maximum value for cj is the number of units of that
resource

Consumable resource: There is no need to release a
resource after it has been acquired. E.g., a message,
input data, … Notice that cj is unbounded.

Slide 6-36Using the Model
• There is a resource manager, Mgr(Rj) for every Rj

Mgr(Rj)Process

pi can only request ni ≤ cj units of reusable Rj
pi can request unbounded # of units of consumable Rj

• Process pi can request units of Rj if it is currently running

request

•Mgr(Rj) can allocate units of Rj to pi

allocate

19

Slide 6-37A Generic Resource Manager

Process

Resource Manager

ProcessProcessProcess

Blocked Processes

Resource Pool

request()

release()

Policy

Slide 6-38Process Hierarchies
Initial Process

System
Process

System
Process

Other
Processes

20

Slide 6-39Process Hierarchies
• Parent-child relationship may be significant:

parent controls children’s execution

Ready-Active

Blocked-Active

Running

Start
Schedule

Request
Done

Request

Allocate
Ready-Suspended

Blocked-Suspended

SuspendYield

Allocate
Suspend

Suspend

Activate

Activate

Slide 6-40Process Manager Overview

Program Process

Abstract Computing Environment

File
Manager

Memory
Manager

Device
Manager

Protection
Deadlock

Synchronization

Process
Description

CPU Other H/W

Scheduler
Resource
Manager
Resource
Manager
Resource
Manager

MemoryDevices

21

Slide 6-41UNIX Organization

System Call Interface

File
Manager

Memory
Manager

Device
Manager

Protection
Deadlock

Synchronization

Process
Description

CPU Other H/W

Scheduler
Resource
Manager
Resource
Manager
Resource
Manager

MemoryDevices

Libraries Process
Process

Process

Monolithic Kernel

Slide 6-42Windows NT Organization

Processor(s) Main Memory Devices

Libraries

Process
Process

Process

Subsystem
User

Subsystem Subsystem

Hardware Abstraction Layer
NT Kernel

NT Executive
I/O Subsystem

T
T

T
T

T
T T T

T

