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Slide 6-3Modern process

“The value of the modern process model is that it enables
the programmer to design software so that various parts
of the computation can work together as a set of threads
within a single modern process framework.”

Classic process can work together but they do not
share a customized computational framework

Slide 6-4External View of the Process Manager
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Slide 6-5Process Manager Responsibilities

• Define & implement the essential characteristics of a
process and thread
– Algorithms to define the behavior
– Data structures to preserve the state of the execution

• Define what “things” threads in the process can reference –
the address space (most of the “things” are memory
locations)

• Manage the resources used by the processes/threads
• Tools to create/destroy/manipulate processes & threads
• Tools to time-multiplex the CPU – Scheduling the

(Chapter 7)
• Tools to allow threads to synchronization the operation

with one another (Chapters 8-9)
• Mechanisms to handle deadlock (Chapter 10)
• Mechanisms to handle protection (Chapter 14)

Slide 6-6Modern Processes and Threads

OS interface

…

…

…
Pi CPU

Thrdj in Pi Thrdk in Pi

…



4

Slide 6-7Modern Threads

User Space Threads - underlying Os implements classic
processes and the user space thread library executes on
top of the OS abstract machine to multiprogram the
threads. (Mach C and POSIX threads)

Kernel Threads - OS time-multiplexes the execution of
threads instead of processes.  Therefore when one
thread blocks the other threads can still execute.
(Windows)

Slide 6-8Resources
Any element of the abstract machine that a process can
request and can cause the process to be blocked if not
available.

If device is allocated to a process then it is configured into
the abstract machine for process

Multiple resource managers - hardware devices, processor,
abstract synch resources, primary memory, and files

Each resource manager must present a common behavior
described by a general model
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Slide 6-9Processes &Threads
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Slide 6-11Building the Address Space

• Some parts are built into the environment
– Files
– System services

• Some parts are imported at runtime
– Mailboxes
– Network connections

• Memory addresses are created at compile
(and run) time

Slide 6-12The OS

• Abstract machine interface
– Host hardware instruction set and set of

functions exported by OS
• Unix and Windows most widely used
• Unix - POSIX interface (standard)
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Slide 6-13Modern Process Framework

• Thread-based computation is executed within this
framework

• Modern Process structure
– Address space
– Program
– Data - shared by threads
– Resources

• Threads share the resources that have been allocated to the
process

– Process Id

Slide 6-14Threads

• Active Element
• Threads

– Host process environment
– Thread-specific data (at least a stack)
– Thread ID
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Slide 6-15

Tracing the Hardware Process
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Slide 6-16The Abstract Machine Interface
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Slide 6-17Abstract Machine Instruction Set
ALU - load, store, add…
Control Unit - branch, procedure_call…
Trap - create_process(), open_file()…

Linux 2.4x
-  exports over 200 functions
- 2.5 million lines of code

Windows NT/2000/XP
- exports over 2,000 functions
- over 25 million lines of code

Slide 6-18Context Switching

Process
Manager

Interrupt
Handler

P1

P2

Pn

Executable Memory

Initialization 1

2
3

4
5

7
Interrupt

8

9

6



10

Slide 6-19Process Descriptors
• OS creates/manages process abstraction
• Descriptor is data structure for each process

– Register values
– Logical state
– Type & location of resources it holds
– List of resources it needs
– Security keys
– Process ID, parent process

Slide 6-20Creating a Process in UNIX
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Slide 6-21Linux Process Descriptor

Slide 6-22Linux Process Descriptor
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Slide 6-23Linux Process Descriptor

Slide 6-24

EPROCESS

…
void  *UniqueProcessId;
…

NT Executive

Windows NT Process Descriptor
KPROCESS
…
uint32  KernelTime;
uint32  UserTime;
…
Byte    state;

NT Kernel

NT Kernel handles object management, interrupt handing, thread scheduling
NT Executive handles all other aspect of a process
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Slide 6-25Windows NT Process Descriptor (2)

• Kernel process object includes:
• Pointer to the page directory
• Kernel  & user time
• Process base priority
• Process state
• List of the Kernel thread descriptors that are

using this process

Slide 6-26Windows NT Process Descriptor (3)

• Parent identification
• Exit status
• Creation and termination times.
• Memory status
• Security information
• executable image
• Process priority class used by the thread

scheduler.
• A list of handles used by this process
• A pointer to Win32-specific information
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Slide 6-27

ETHREAD

Windows NT Thread Descriptor
EPROCESS
KPROCESS

NT Kernel
KTHREAD

NT Executive

Slide 6-28Creating a Process in NT
CreateProcess(…);

Win32 Subsystem

ntCreateProcess(…);
…
ntCreateThread(…);

NT Executive

NT Kernel
…

Handle Table

Process Descriptor
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Slide 6-29Windows NT Handles
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Slide 6-30Thread Abstraction
Process Manager has algorithms to control threads and
thread descriptor (data structure) to keep track of threads.

Management Tasks
- Create/destroy thread
- Allocate thread-specific resources
- Manage thread context switching

Thread Descriptor
- state
- execution stats
- process (reference to associated process)
- list of related threads
- stack (reference to stack)
- thread-specific resources
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Slide 6-31State of a Process/Thread
State Variable - summary status of the process/thread which
is located in descriptor
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Slide 6-32UNIX State Transition Diagram
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Slide 6-33Windows NT Thread States
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Slide 6-34Resources
Resource: Anything that a process can request and then
become blocked because that thing is not available.

Resource Descriptors
- Internal resource name
- Total Units
- Available Units
- List of available units
- List of Blocked processes



18

Slide 6-35Resources

R = {Rj | 0 ≤ j < m} = resource types
C = {cj ≥ 0 | ∀ Rj∈R (0 ≤ j < m)} = units of Rj available

Reusable resource: After a unit of the resource has been
allocated, it must ultimately be released back to the
system. E.g., CPU, primary memory, disk space, … The
maximum value for cj is the number of units of that
resource

Consumable resource: There is no need to release a
resource after it has been acquired. E.g., a message,
input data, … Notice that cj is unbounded.

Slide 6-36Using the Model
• There is a resource manager, Mgr(Rj) for every Rj

Mgr(Rj)Process

pi can only request ni ≤ cj units of reusable Rj
pi can request unbounded # of units of consumable Rj

• Process pi can request units of Rj if it is currently running

request

•Mgr(Rj) can allocate units of Rj to pi

allocate
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Slide 6-37A Generic Resource Manager
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Slide 6-38Process Hierarchies
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Slide 6-39Process Hierarchies
• Parent-child relationship may be significant:

parent controls children’s execution
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Slide 6-40Process Manager Overview
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Slide 6-41UNIX Organization

System Call Interface
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Slide 6-42Windows NT Organization
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