Slide 2-1

Using the
Operating System

Slide 2-2

The Airplane Pilot’s Abstract
Machine

Slide 2-3

Basic Abstractions

Abstract

Program Machine Result
Abstract Physical

Program| ——> Machine] \lachine —>| Result

Abstract
Program Machine Result

Abstract Machine Entities

» Process: A sequential program in execution

* Resource: Any abstract resource that a
process can request, and which may can
cause the process to be blocked if the
resource is unavailable.

« File: A special case of a resource. A
linearly-addressed sequence of bytes. “A
byte stream.”

Algorithms, Programs, and s«
Processes

Execution Engine

Algorithm
Source Binary Data
Program Program Other
Resources

Process

Classic Process

« OS implements {abstract machine} — one per
task

* Multiprogramming enables N programs to be
space-muxed in executable memory, and time-
muxed across the physical machine processor.

» Result: Have an environment in which there
can be multiple programs in execution
concurrently®, each as a processes

* Concurrently: Programs appear to execute simultaneously

Process Abstraction

Slide 2-7

Processes Sharing a Program

Shared Program Text

Slide 2-8

Multithreaded Accountant

Invoice =~

First Accountant .

Invoice ==
| Purchase Orders |
Invoice 5~ Accountant & Clone
22 Purchase Orders
Second Accountant
(a) Separate Processes (b) Double Threaded Process

Modern Process & Thread

 Divide classic process:

— Process 1s an infrastructure in which execution
takes place — address space + resources

— Thread 1s a program in execution within a
process context — each thread has its own stack

Program fg—

| Operating System

A Process with Multiple Threads ***"

Thread (Execution Engine)

o

Other
Resources

Binary
Program

Process

More on Processes

* Abstraction of processor resource

— Programmer sees an abstract machine environment
with spectrum of resources and a set of resource
addresses (most of the addresses are memory
addresses)

— User perspective is that its program is the only one in
execution

— OS perspective is that it runs one program with its
resources for a while, then switches to a different
process (context switching)

* OS maintains
— A process descriptor data structure to implement the
process abstraction

* Identity, owner, things it owns/accesses, etc.
» Tangible element of a process

— Resource descriptors for each resource

Slide 2-13

Address Space

» Process must be able to reference every
resource in its abstract machine

* Assign each unit of resource an address
— Most addresses are for memory locations
— Abstract device registers
— Mechanisms to manipulate resources

» Addresses used by one process are
inaccessible to other processes

 Say that each process has its own address
space

Shared Address Space

* C(Classic processes sharing program = shared
address space support

* Thread model simplifies the problem

— All threads in a process implicitly use that process’s
address space , but no “unrelated threads” have access
to the address space

— Now trivial for threads to share a program and data
* If you want sharing, encode your work as threads in a process
* If you do not want sharing, place threads in separate processes

Process & Address Space

Resources

Abstract Machine Environment

Address Space

Cl'eating d PI‘OC@SS Slide 2-16

 Here is the classic model for creating
processes:

FORK (label) - Create another process in the same address
space beginning execution at instruction 1abel

QUIT () - Terminate the process.

JOIN (count) - Merge processes into one.

Equivalent Code:
disableInterrupts();
count--;
if (count > 0) QUIT();
enableInterrupts() ;

Slide 2-17
Example
procA () { procB() {
while (TRUE) { while (TRUE) {
<compute section Al>; retrieve (x);
update (x) ; <compute section Bl>;
<compute section A2>; update (y) ;
retrieve (y); <compute section B2>;
} }
} }
Slide 2-18

Example (cont)

LO0: count = 2;
<compute section Al>;
update (x) ;
FORK (L2) ;
<compute section A2>;
Ll: JOIN (count);
retrieve (y);
goto LO;
L2: retrieve (x);
<compute section Bl>;
update (y) ;
FORK (L3) ;
goto L1;
L3: <compute section B2>
QUIT () ;

Example (cont)

Slide 2-19

LO: count = 2; LO: count = 2;
<compute section Al>; <compute section Al>;
update (x) ; update (x) ;
FORK (L2) ; FORK (L2) ;
<compute section A2>; retrieve(y);
Ll: JOIN(count); <compute section B1l>
retrieve (y); update (y>;
goto LO; FORK (L3)
L2: retrieve (x); Ll: JOIN(count);
<compute section Bl>; retrieve(y);
update (y) ; goto LO;
FORK (L3) ; L2: <compute section A2>;
goto L1; goto L1;
L3: <compute section B2> L3: <compute section B2>
QUIT(); QUIT();
Slide 2-20

UNIX Processes

N -
N g
= L

Stack
Segment|__

-1
[IP2RN
5 N

AL Se 1'\\‘1

Files

Text
Segment

Data
Segment

Process

Other
Resources

UNIX Kernel

10

UNIX Processes

Each process has its own address space
— Subdivided into text, data, & stack segment
— a.out file describes the address space

OS kernel creates descriptor to manage
process

Process identifier (PID): User handle for the
process (descriptor)

* Try “ps” and “ps -aux” (read man page)

A Process with Multiple Threads ****

Thread (Execution Engine)
.
=)

A\

Data

Binary Other
Program Resources

Process

11

Slide 2-23

Creating/Destroying Processes

* UNIX fork () creates a process
— Creates a new address space
— Copies text, data, & stack into new address space
— Provides child with access to open files

« UNIX wait () allows a parent to wait for a child
to terminate

« UNIX execve () allows a child to run a new
program

Slide 2-24

Creating a UNIX Process

int pidValue;

pidvalue = fork(); /* Creates a child process */
if (pidvalue == 0) {

/* pidvalue is 0 for child, nonzero for parent */

/* The child executes this code concurrently with parent */
childsPlay (..); /* A procedure linked into a.out */
exit (0);

}

/* The parent executes this code concurrently with child */
parentsWork(..);

wait (..);

12

Slide 2-25

Child Executes a Different Program

int pid;
/* Set up the argv array for the child */

/* Create the child */
if ((pid = fork()) == 0) {
/* The child executes its own absolute program */
execve (childProgram.out, argv, 0);
/* Only return from an execve call if it fails */
printf (“Error in the exec .. terminating the child ..”);

exit (0);
}
wait (..); /* Parent waits for child to terminate */
E 1 P t Slide 2-26
#include <sys/wait.h>
#define NULL 0

int main (void)

{

if (fork() == 0){ /* This is the child process */
execve ("child",NULL, NULL) ;
exit (0); /* Should never get here, terminate */

}
/* Parent code here */
printf ("Process[%d]: Parent in execution ...\n", getpid());
sleep(2);
if (wait (NULL) > 0) /* Child terminating */
printf ("Process[%d]: Parent detects terminating child \n",
getpid());
printf ("Process[%d]: Parent terminating ...\n", getpid());

13

Example: Child Side 227

int main (void)
{
/* The child process's new program
This program replaces the parent's program */

printf ("Process[%d]: child in execution ...\n", getpid()):;
sleep (1) ;
printf ("Process[%d]: child terminating ...\n", getpid()):;

Threads -- The NT Model

Thread (Execution Engine)

Other
Resources

Binary
Program

Process

14

Slide 2-29

Windows NT Process

#include <cthreads.h>
int main(int argv, char *argv[]) {

STARTUPINFO startInfo;
PROCESS_INFORMATION processInfo;

strcpy (lpCommandLine,
“C:\\WINNT\\SYSTEM32\\NOTEPAD.EXE temp.txt)”;
ZeroMemory (&startInfo, sizeof (startInfo));
startInfo.cb = sizeof (startInfo);
if (!CreateProcess (NULL, lpCommandLine, NULL, NULL, FALSE,
HIGH_PRIORITY CLASS | CREATE_ NEW_CONSOLE,
NULL, NULL, &startInfo, &processInfo)) {
fprintf (stderr, “CreateProcess failed on error %d\n”,
GetLastError());
ExitProcess(1l);
}i
/* A new child process is now executing the lpCommandLine program */

CloseHandle (&processInfo.hThread) ;
CloseHandle (&processInfo.hProcess) ;

t_handle = CreateProcess(.., lpCommandLine, ..);

NT Threads

#include <cthreads.h>

int main(int argv, char *argv[]) {
t_handle = CreateThread(
LPSECURITY ATTRIBUTES lpThreadAttributes,
// pointer to thread security attributes
DWORD dwStackSize,
// initial thread stack size, in bytes
LPTHREAD START_ ROUTINE lpStartAddress,
// pointer to thread function
LPVOID lpParameter, // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId
// pointer to returned thread identifier
)
/* A new child thread is now executing the tChild function */
Sleep (100) /* Let another thread execute */
}

DWPRD WINAPI tChild (LPVOID me) {
/* This function is executed by the child thread */

SLEEP (100) ; /* Let another thread execute */

15

_beginthreadex() Side 231

+Single copy of certain variables in a process
*Need a copy per thread

unsigned long beginthreadex(
void *security,
unsigned stack size,
unsigned (_ stdcall *start address) (void *),
void *arglist,
unsigned initflag,
unsigned *thrdaddr

Re SOUrces Slide 2-32

* Anything that a process requests from an OS

— Available = allocated
— Not available = process is blocked

+ Examples

— Files

— Primary memory address space (“virtual memory”)
— Actual primary memory (“physical memory”)

— Devices (e.g., window, mouse, kbd, serial port, ...)
— Network port

— ... many others ...

16

F 1 1 es Slide 2-33
» Data must be read into (and out of) the
machine — I/O devices
 Storage devices provide persistent copy
* Need an abstraction to make 1/O simple —
the file
* A file is a linearly-addressed sequence of
bytes
— From/to an input device
— Including a storage device
The File Abstraction
) File

Operating System

¢ l File
Processor Descriptor
______ Executable Device
—————— » Memory

17

UNIX Files e

« UNIX and NT try to make every resource
(except CPU and RAM) look like a file

e Then can use a common interface:

open Specifies file name to be used
close Release file descriptor

read Input a block of information
write Output a block of information
1seek Position file for read/write
ioctl Device-specific operations

UNIX File Example Side 230

#include <stdio.h>

#include <fcntl.h>

int main() {
int inFile, outFile;
char *inFileName = “in test”;
char *outFileName = “out test”;
int len;
char c;

inFile = open (inFileName, O RDONLY) ;
outFile = open(outFileName, O WRONLY) ;
/* Loop through the input file */
while ((len = read(inFile, &c, 1)) > 0)
write (outFile, &c, 1);
/* Close files and quite */
close (inFile);
close (outFile) ;

18

Slide 2-37

Windows File Manipulation Program

#include <windows.h>
#include <stdio.h>
#define BUFFER LEN ... // # of bytes to read/write
/* The producer process reads information from the file name
in test then writes it to the file named out test.
*/
int main(int argc, char *argv([]) {
// Local variables
char buffer [BUFFER LEN+1];
// CreateFile parameters
DWORD dwShareMode = 0; // share mode
LPSECURITY ATTRIBUTES lpFileSecurityAttributes = NULL;
// pointer to security attributes
HANDLE hTemplateFile = NULL;
// handle to file with attributes to copy
// ReadFile parameters
HANDLE sourceFile; // Source of pipeline
DWORD numberOfBytesRead; // number of bytes read
LPOVERLAPPED lpOverlapped = NULL; // Not used here

Slide 2-38

Windows File Manipulation Program(2)

// WriteFile parameters
HANDLE sinkFile; // Source of pipeline
DWORD numberOfBytesWritten; // # bytes written
// Open the source file
sourceFile = CreateFile (
"in test",
GENERIC READ,
dwShareMode,
lpFileSecurityAttributes,
OPEN ALWAYS,
FILE ATTRIBUTE READONLY,
hTemplateFile
);
if (sourceFile == INVALID HANDLE VALUE) {
fprintf (stderr, "File open operation failed\n");
ExitProcess(1l);

19

Slide 2-39

Windows File Manipulation Program(3)

// Open the sink file

sinkFile = CreateFile (
"out test",
GENERIC WRITE,
dwShareMode,
lpSecurityAttributes,
CREATE ALWAYS,
FILE ATTRIBUTE NORMAL,
hTemplateFile

)i

if (sinkFile == INVALID HANDLE VALUE) {
fprintf (stderr, "File open operation failed\n");
ExitProcess (1) ;

Slide 2-40

Windows File Manipulation Program(4)

// Main loop to copy the file
while
(
ReadFile (
sourceFile, buffer,
BUFFER LEN, &numberOfBytesRead,
lpOverlapped
)
&&
numberOfBytesRead > 0

WriteFile(sinkFile, buffer, BUFFER LEN,
&numberOfBytesWritten, lpOverlapped);
}
// Terminating. Close the sink and source files
CloseHandle (sourceFile) ;
CloseHandle (sinkFile) ;

ExitProcess (0) ;

20

Shell Command Line Interpreter

Interactive User
Shell Program @

U J

| OS System Call Interface |

Application
& System
Software

Slide 2-41

[e)

o

o

The Shell Strategy

grep first £3

read keyboard fork a process

Process
to execute

ommangd
- ﬁ file

Slide 2-42

21

Bootstrapping

« Computer starts, begins executing a
bootstrap program -- initial process

» Loads OS from the disk (or other device)

* Initial process runs OS, creates other
processes

Slide 2-43

/etc/passwd

Slide 2-44

22

Objects

A recent trend is to replace processes by
objects

Objects are autonomous

Objects communicate with one another
using messages

Popular computing paradigm

Too early to say how important it will be ...

Slide 2-45

23

