
1

Slide 2-1

Using the
Operating System

Slide 2-2The Airplane Pilot’s Abstract
Machine

2

Slide 2-3

Basic Abstractions

Program Result

Abstract
Machine

Abstract
Machine

Program Result

Program Result

Abstract
Machine

Physical
Machine

… …

Idea

Idea

Idea

Slide 2-4Abstract Machine Entities

• Process: A sequential program in execution
• Resource: Any abstract resource that a

process can request, and which may can
cause the process to be blocked if the
resource is unavailable.

• File: A special case of a resource. A
linearly-addressed sequence of bytes. “A
byte stream.”

3

Slide 2-5Algorithms, Programs, and
Processes

Data

FilesFilesFiles

Other
Resources

Algorithm

Idea

Source
Program

Binary
Program

Execution Engine

Process

StackStatus

Slide 2-6Classic Process

• OS implements {abstract machine} – one per
task

• Multiprogramming enables N programs to be
space-muxed in executable memory, and time-
muxed across the physical machine processor.

• Result: Have an environment in which there
can be multiple programs in execution
concurrently*, each as a processes

* Concurrently: Programs appear to execute simultaneously

4

Slide 2-7Process Abstraction

Hardware

Data

Process

St
ac

k

Processor

Executable
Memory

Program

Operating System

Slide 2-8Processes Sharing a Program

Shared Program Text

P1

P2

P3

P1 P2 P3

FilesFiles

FilesFiles

FilesFiles

5

Slide 2-9Multithreaded Accountant

Purchase Orders

Invoice

Invoice

(a) Separate Processes

Purchase Orders

Invoice
First Accountant

Second Accountant

Accountant & Clone

(b) Double Threaded Process

Slide 2-10Modern Process & Thread
• Divide classic process:

– Process is an infrastructure in which execution
takes place – address space + resources

– Thread is a program in execution within a
process context – each thread has its own stack

Data

Process

St
ac

k

Program

Operating System

Thread
Thread

Thread

St
ac

k

…

St
ac

k

6

Slide 2-11A Process with Multiple Threads

Data

FilesFilesFiles

Other
Resources

Binary
Program

Process

StackStatus

StackStatus

StackStatus

Thread (Execution Engine)

Slide 2-12More on Processes
• Abstraction of processor resource

– Programmer sees an abstract machine environment
with spectrum of resources and a set of resource
addresses (most of the addresses are memory
addresses)

– User perspective is that its program is the only one in
execution

– OS perspective is that it runs one program with its
resources for a while, then switches to a different
process (context switching)

• OS maintains
– A process descriptor data structure to implement the

process abstraction
• Identity, owner, things it owns/accesses, etc.
• Tangible element of a process

– Resource descriptors for each resource

7

Slide 2-13

Address Space
• Process must be able to reference every

resource in its abstract machine
• Assign each unit of resource an address

– Most addresses are for memory locations
– Abstract device registers
– Mechanisms to manipulate resources

• Addresses used by one process are
inaccessible to other processes

• Say that each process has its own address
space

Slide 2-14Shared Address Space

• Classic processes sharing program ⇒ shared
address space support

• Thread model simplifies the problem
– All threads in a process implicitly use that process’s

address space , but no “unrelated threads” have access
to the address space

– Now trivial for threads to share a program and data
• If you want sharing, encode your work as threads in a process
• If you do not want sharing, place threads in separate processes

8

Slide 2-15Process & Address Space

Address Space

Code Resources
Resources

Abstract Machine Environment

Stack
Data

Resources

Slide 2-16Creating a Process

• Here is the classic model for creating
processes:

FORK(label)- Create another process in the same address
space beginning execution at instruction label
QUIT()- Terminate the process.
JOIN(count)- Merge processes into one.

Equivalent Code:
 disableInterrupts();
 count--;
 if(count > 0) QUIT();
 enableInterrupts();

9

Slide 2-17Example

procA() {
 while(TRUE) {
 <compute section A1>;
 update(x);
 <compute section A2>;
 retrieve(y);
 }
}

procB() {
 while(TRUE) {
 retrieve(x);
 <compute section B1>;
 update(y);
 <compute section B2>;
 }
}

Process A Process B
x

y

Slide 2-18Example (cont)

L0: count = 2;
 <compute section A1>;
 update(x);
 FORK(L2);
 <compute section A2>;
L1: JOIN(count);
 retrieve(y);
 goto L0;
L2: retrieve(x);
 <compute section B1>;
 update(y);
 FORK(L3);
 goto L1;
L3: <compute section B2>
 QUIT();

10

Slide 2-19

Example (cont)
L0: count = 2;
 <compute section A1>;
 update(x);
 FORK(L2);
 <compute section A2>;
L1: JOIN(count);
 retrieve(y);
 goto L0;
L2: retrieve(x);
 <compute section B1>;
 update(y);
 FORK(L3);
 goto L1;
L3: <compute section B2>
 QUIT();

L0: count = 2;
 <compute section A1>;
 update(x);
 FORK(L2);
 retrieve(y);
 <compute section B1>
 update(y>;
 FORK(L3)
L1: JOIN(count);
 retrieve(y);
 goto L0;
L2: <compute section A2>;
 goto L1;
L3: <compute section B2>
 QUIT();

Slide 2-20UNIX Processes

UNIX Kernel

Data
Segment

FilesFilesFiles

Other
Resources

Text
Segment

Stack
SegmentStatus

Process

11

Slide 2-21UNIX Processes
• Each process has its own address space

– Subdivided into text, data, & stack segment
– a.out file describes the address space

• OS kernel creates descriptor to manage
process

• Process identifier (PID): User handle for the
process (descriptor)

• Try “ps” and “ps -aux” (read man page)

Slide 2-22A Process with Multiple Threads

Data

FilesFilesFiles

Other
Resources

Binary
Program

Process

StackStatus

StackStatus

StackStatus

Thread (Execution Engine)

12

Slide 2-23Creating/Destroying Processes
• UNIX fork() creates a process

– Creates a new address space
– Copies text, data, & stack into new address space
– Provides child with access to open files

• UNIX wait() allows a parent to wait for a child
to terminate

• UNIX execve() allows a child to run a new
program

Slide 2-24Creating a UNIX Process

int pidValue;
 ...
pidValue = fork(); /* Creates a child process */
if(pidValue == 0) {
 /* pidValue is 0 for child, nonzero for parent */
 /* The child executes this code concurrently with parent */
 childsPlay(…); /* A procedure linked into a.out */
 exit(0);
}
/* The parent executes this code concurrently with child */
parentsWork(..);
wait(…);
 ...

13

Slide 2-25Child Executes a Different Program

int pid;
 ...
/* Set up the argv array for the child */
 ...
/* Create the child */
if((pid = fork()) == 0) {
 /* The child executes its own absolute program */
 execve(childProgram.out, argv, 0);
 /* Only return from an execve call if it fails */
 printf(“Error in the exec … terminating the child …”);
 exit(0);
}
 ...
wait(…); /* Parent waits for child to terminate */
 ...

Slide 2-26Example: Parent
#include <sys/wait.h>

#define NULL 0

int main (void)
{
 if (fork() == 0){ /* This is the child process */
 execve("child",NULL,NULL);
 exit(0); /* Should never get here, terminate */
 }
/* Parent code here */
 printf("Process[%d]: Parent in execution ...\n", getpid());
 sleep(2);
 if(wait(NULL) > 0) /* Child terminating */
 printf("Process[%d]: Parent detects terminating child \n",
 getpid());
 printf("Process[%d]: Parent terminating ...\n", getpid());
}

14

Slide 2-27Example: Child

int main (void)
{
/* The child process's new program
 This program replaces the parent's program */

 printf("Process[%d]: child in execution ...\n", getpid());
 sleep(1);
 printf("Process[%d]: child terminating ...\n", getpid());
}

Slide 2-28Threads -- The NT Model

Data

FilesFilesFiles

Other
Resources

Binary
Program

Process

StackStatus

StackStatus

StackStatus

Thread (Execution Engine)

15

Slide 2-29Windows NT Process
#include <cthreads.h>
 ...
int main(int argv, char *argv[]) {
 ...
 STARTUPINFO startInfo;

PROCESS_INFORMATION processInfo;
 ...

strcpy(lpCommandLine,
“C:\\WINNT\\SYSTEM32\\NOTEPAD.EXE temp.txt)”;

ZeroMemory(&startInfo, sizeof(startInfo));
startInfo.cb = sizeof(startInfo);
if(!CreateProcess(NULL, lpCommandLine, NULL, NULL, FALSE,

HIGH_PRIORITY_CLASS | CREATE_NEW_CONSOLE,
NULL, NULL, &startInfo, &processInfo)) {

 fprintf(stderr, “CreateProcess failed on error %d\n”,
GetLastError());

 ExitProcess(1);
};

/* A new child process is now executing the lpCommandLine program */
 ...

CloseHandle(&processInfo.hThread);
CloseHandle(&processInfo.hProcess);

 t_handle = CreateProcess(…, lpCommandLine, …);
}

Slide 2-30NT Threads
#include <cthreads.h>
 ...
int main(int argv, char *argv[]) {
 t_handle = CreateThread(

LPSECURITY_ATTRIBUTES lpThreadAttributes,
// pointer to thread security attributes

DWORD dwStackSize,
// initial thread stack size, in bytes

LPTHREAD_START_ROUTINE lpStartAddress,
// pointer to thread function

LPVOID lpParameter, // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId

// pointer to returned thread identifier
);

/* A new child thread is now executing the tChild function */
 Sleep(100) /* Let another thread execute */
}

DWPRD WINAPI tChild(LPVOID me) {
/* This function is executed by the child thread */
 ...
 SLEEP(100); /* Let another thread execute */
 ...
}

16

Slide 2-31_beginthreadex()

unsigned long _beginthreadex(
 void *security,
 unsigned stack_size,
 unsigned (__stdcall *start_address)(void *),
 void *arglist,
 unsigned initflag,
 unsigned *thrdaddr
);

•Single copy of certain variables in a process
•Need a copy per thread

Slide 2-32Resources

• Anything that a process requests from an OS
– Available ⇒ allocated
– Not available ⇒ process is blocked

• Examples
– Files
– Primary memory address space (“virtual memory”)
– Actual primary memory (“physical memory”)
– Devices (e.g., window, mouse, kbd, serial port, …)
– Network port
– … many others …

17

Slide 2-33Files

• Data must be read into (and out of) the
machine – I/O devices

• Storage devices provide persistent copy
• Need an abstraction to make I/O simple –

the file
• A file is a linearly-addressed sequence of

bytes
– From/to an input device
– Including a storage device

Slide 2-34The File Abstraction

Hardware

Data

Process

St
ac

k

Processor

Executable
Memory

Program

Operating System

Storage
Device

File

File
Descriptor

18

Slide 2-35UNIX Files

open Specifies file name to be used
close Release file descriptor
read Input a block of information
write Output a block of information
lseek Position file for read/write
ioctl Device-specific operations

• UNIX and NT try to make every resource
(except CPU and RAM) look like a file

• Then can use a common interface:

Slide 2-36UNIX File Example
#include <stdio.h>
#include <fcntl.h>
int main() {
 int inFile, outFile;
 char *inFileName = “in_test”;
 char *outFileName = “out_test”;
 int len;
 char c;

 inFile = open(inFileName, O_RDONLY);
 outFile = open(outFileName, O_WRONLY);
/* Loop through the input file */
 while ((len = read(inFile, &c, 1)) > 0)
 write(outFile, &c, 1);
/* Close files and quite */
 close(inFile);
 close(outFile);
}

19

Slide 2-37Windows File Manipulation Program
#include <windows.h>
#include <stdio.h>
#define BUFFER_LEN ... // # of bytes to read/write
/* The producer process reads information from the file name
 in_test then writes it to the file named out_test.
*/
int main(int argc, char *argv[]) {
// Local variables
 char buffer[BUFFER_LEN+1];
// CreateFile parameters
 DWORD dwShareMode = 0; // share mode
 LPSECURITY_ATTRIBUTES lpFileSecurityAttributes = NULL;
 // pointer to security attributes
 HANDLE hTemplateFile = NULL;
 // handle to file with attributes to copy
// ReadFile parameters
 HANDLE sourceFile; // Source of pipeline
 DWORD numberOfBytesRead; // number of bytes read
 LPOVERLAPPED lpOverlapped = NULL; // Not used here

Slide 2-38Windows File Manipulation Program(2)
// WriteFile parameters
 HANDLE sinkFile; // Source of pipeline
 DWORD numberOfBytesWritten; // # bytes written
// Open the source file
 sourceFile = CreateFile (
 "in_test",
 GENERIC_READ,
 dwShareMode,
 lpFileSecurityAttributes,
 OPEN_ALWAYS,
 FILE_ATTRIBUTE_READONLY,
 hTemplateFile
);
 if(sourceFile == INVALID_HANDLE_VALUE) {
 fprintf(stderr, "File open operation failed\n");
 ExitProcess(1);
 }

20

Slide 2-39Windows File Manipulation Program(3)

// Open the sink file
 sinkFile = CreateFile (
 "out_test",
 GENERIC_WRITE,
 dwShareMode,
 lpSecurityAttributes,
 CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 hTemplateFile
);
 if(sinkFile == INVALID_HANDLE_VALUE) {
 fprintf(stderr, "File open operation failed\n");
 ExitProcess(1);
 }

Slide 2-40Windows File Manipulation Program(4)
// Main loop to copy the file
 while
 (
 ReadFile(
 sourceFile, buffer,
 BUFFER_LEN, &numberOfBytesRead,
 lpOverlapped
)
 &&
 numberOfBytesRead > 0
) {
 WriteFile(sinkFile, buffer, BUFFER_LEN,
 &numberOfBytesWritten, lpOverlapped);
 }
// Terminating. Close the sink and source files
 CloseHandle(sourceFile);
 CloseHandle(sinkFile);

 ExitProcess(0);
}

21

Slide 2-41

Shell Command Line Interpreter

OS

Interactive User

Shell Program

Application
& System
Software

OS System Call Interface

Slide 2-42The Shell Strategy

Shell Process

Process
to execute
command

% grep first f3

f3

read keyboard fork a process

read file

22

Slide 2-43Bootstrapping

• Computer starts, begins executing a
bootstrap program -- initial process

• Loads OS from the disk (or other device)
• Initial process runs OS, creates other

processes

Slide 2-44

Serial Port A

Serial Port B

Serial Port C

Serial Port Z

login

login

login

login

getty

/etc/passwd

23

Slide 2-45Objects
• A recent trend is to replace processes by

objects
• Objects are autonomous
• Objects communicate with one another

using messages
• Popular computing paradigm
• Too early to say how important it will be ...

