Virtual Memory

Gordon College
Stephen Brinton

Virtual Memory

Background

Demand Paging

Process Creation

Page Replacement
Allocation of Frames
Thrashing

Demand Segmentation
Operating System Examples

Background

+ Virtual memory — separation of user logical
memory from physical memory.

— Only part of the program needed

— Logical address space > physical address
space.

* (easier for programmer)
— shared by several processes.
— efficient process creation.
— Less /O to swap processes
+ Virtual memory can be implemented via:
— Demand paging
— Demand segmentation

Larger Than Physical Memory

page 0 Max

age 1
pag stack

page 2 e

— 'HO N
\ N E0mE
ul §n

\-

/)
///

/
|
L]
i

memory heap
map -

page v physical data

- memory
virtual

memon

code

Shared Library Using Virtual

stack stack
shared
shared library pages shared library
heap heap
data data
code code

Demand Paging

« Bring a page into memory only when it is
needed
— Less I/O needed
— Less memory needed
— Faster response
— More users (processes) able to execute

» Page is needed = reference to it
— Page available = immediate access
— Invalid reference = abort
— Not-in-memory = bring to memory

Valid-Invalid Bit

+ With each page table

S e s e entry a valid—invalid bit is

table snapshot: associated
Frame # valid-invalid bit (1 = in-memory, 0 = not-
33 1 in-memory)
34 1
36 1
23 1 + Initially valid—invalid bit is
0 set to 0 on all entries

o
.

During address

0 translation, if valid—invalid
bit in page table entry is O
= page-fault trap

page table

Page Table: Some Pages Are Not in Main Memory

0
1
A 2
valid—invalid
= frame 3 /\
v
C . 7
HRERN
i 5
4 E 6 = D
L r .
¢ 5 [o]
7 H 9 z D D
logical page table 10
memory D D D
11

physical memory

Page-Fault Trap

Reference to a page with invalid bit set - trap

to OS = page fault
Must decide???:

— Invalid reference = abort.

— Just not in memory =

Get empty frame.
Swap page into frame.

Reset tables, validation bit = 1.

Restart instruction:

physical memory

O00
0@ @
EEE
@00
minlin

what happens if it is in the middle of an instruction?

Steps in Handling a Page

page is on
backing store /_\
operating
system @
reference
@ trap
load M [i
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory

What happens if there is no free frame?

» Page replacement — find some page in
memory (not in use) & swap it out
— Algorithm - must be speedy
— performance — want an algorithm which
will result in minimum number of page
faults
» Same page may be brought into
memory several times

+ LOCALITY OF REFERENCE principle

Performance of Demand Paging

* Page Fault Rate: 0 < p < 1 (probability of
page fault)

—if p =0, no page faults
—if p =1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead)

Demand Paging Example

* Memory access time = 1 microsecond

* 50% of the time the page that is being replaced has
been modified and therefore needs to be swapped
out

Page-switch time: around 8 ms.
EAT = (1 — p) x (200) + p(8 milliseconds)
= (1-p) x (200) + p(8,000,000)
=200 + 7,999,800p

220 > 200 + 7,999,800p
p < .0000025

Process Creation

* Virtual memory allows other benefits
during process creation:

- Copy-on-Write

- Memory-Mapped Files

Copy-on-Write

* Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in
memory

If either process modifies a shared page, only then is
the page copied

+ COW allows more efficient process creation as only
modified pages are copied

» Free pages are allocated from a pool of zeroed-out
pages (the pool is kept in case of a need to copy)

Need: Page Replacement

¢ Prevent over-
allocation of N -

valid-invalid

frame bil/ 0| monitor S —
mgg‘:‘g/:%gb)‘gage PC —1> e 3 v 1 l =
f - 2 J 4 v 2 D
fault service N 5 v o
routine to : ‘ 'bl
include page logioal memenY Heruser 1 4| lo=aM
replacement 5 J
6 A
i valid-invalid 71 E E
» Use modify » "
H A frame it -
(dlrty) blt tO ; g / &fg/rilgil
reduce overhead R 6 v -
of page transfers 2l
— only modified Sl E 7l

logical memory page table
pages are for user 2

for user
written to disk ;

Basic Page Replacement

frame valid—invalid bit

flv

®

page table ne

change
o i @toinvalid

reset page
table for
W page

f

swap out
victim
page

victim

®/

eeeee

physical
memory

A
A 4

> |

T~

Page Replacement Algorithms

« GOAL: lowest page-fault rate

« Evaluate algorithm by running it
on a particular string of memory

references (reference string) and
computing the number of page
faults on that string

Example string: 1,4,1,6,1,6,1,6,1,6,1

Graph of Page Faults Versus The
Number of Frames

—_ 4
o N
T T T

number of page faults

N O
T

1 | | 1 1 1
1 2 3 4 5 6
number of frames

First-In-First-Out (FIFO) Algorithm

Reference string: 1,2, 3,4,1,2,5,1,2,3,4,5
3 frames (3 pages can be in memory at a time per
process)

1 3 9 page faults

4 frames

1 5 10 page faults

[z =]
N

2
3
4 3

FIFO Replacement — Belady’s Anomaly
— more frames = more page faults

10

FIFO Page Replacement

eference string
2 0 3 0 4 2 3 0 8 2

777 2244 777
33322
22

page frames

FIFO lllustrating Belady’s Anomaly

16 |
o 14F
=
S 12 F
[
g 10F
o
S 8}
2
€ 6
>
< 4_
2_
1 1 1 1 | 1
1 2 3 4 5 6
number of frames

11

Optimal Algorithm

Goal: Replace page that will not be used for longest period
of time

4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

4
6 page faults

1
2]
3]
4

How do you know this?
Used for measuring how well your algorithm performs:
“Well, is it at least 4% as good as Optimal Algorithm?”

Optimal Page Replacement

reference string
7 0 1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1
][9] [o] [o] o] o o] o]
HRERiigil

page frames

Optimal: 9 faults
FIFO: 15 faults
67% increase over the optimal

12

Optimal Page Replacement

* Requires FUTURE knowledge of the reference
string

— therefore (just like SJF) — IMPOSSIBLE TO
IMPLEMENT

» Therefore — used for comparison studies---

“...an algorithm is good because it is 12.3% of
optimal at worst and within 4.7% on average”

Least Recently Used (LRU) Algorithm

» Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

BERE
(&)
N

+ Counter implementation
— Every page entry has a counter; every time page is
referenced through this entry: counter = clock
— When a page needs to be changed, look at the counters to
determine which are to change

13

LRU Page Replacement

/7 01 203 042 30327120170 1

LRU faults ?

LRU Page Replacement

eference string

7 01 2 0 3 0 4 2 3 0 8 2 1t 2 0 1 7 0 1
4] 14] 14| [o]
[1o] o] [o] o] o} o] [3] |3 ol o
HRNREIRil

page frames

Optimal: 9 faults
FIFO: 15 faults

LRU: 12 faults

14

LRU Algorithm (Cont.)

« Stack implementation — keep a stack of page
numbers in a double link form:

— Page referenced:
» move it to the top (most recently used)
» Worst case: 7 pointers to be changed
— No search for replacement

Head

o EHoEE,

Head 3 5

h —4_—4_-4_— Tail
2 4

Also B’s previous link

Use Of A Stack to Record The Most
Recent Page References

reference string
4 7 o0 7 1 0 1 2 1 2 7 1 2
: S
a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

15

LRU Approximation Algorithms

» Reference bit
— With each page associate a bit, initially = 0
— When page is referenced bit set to 1

— Replacement: choose something with O (if one
exists). We do not know the order, however.

» Second chance (Clock replacement)
— Need reference bit

— If page to be replaced (in clock order) has
reference bit = 1 then:

« set reference bit 0
* leave page in memory

« replace next page (in clock order), subject to
same rules

— Can use byte for more resolution

Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits bits
[o] [o]
[o] [o]
fivad [o]
[o]
[o]
circular queue of pages circular queue of pages
(a) (b)

use a circular queue

Counting Algorithms

» Keep a counter of the number of
references that have been made to
each page

* LFU Algorithm: replaces page with
smallest count
- indicates an actively used page

* MFU Algorithm: based on the
argument that the page with the
smallest count was probably just
brought in and has yet to be used

Allocation of Frames

» Each process needs minimum number of pages:
depends on computer architecture

« Example: IBM 370 — 6 pages to handle special
MOVE instruction:

— instruction is 6 bytes, might span 2 pages
— 2 pages to handle from
— 2 pages to handle to
+ Two major allocation schemes
— fixed allocation
— priority allocation

Fixed Allocation

« Equal allocation — For example, if there are 100
frames and 5 processes, give each process 20
frames.

» Proportional allocation — Allocate according to the
size of process

s; = size of process p; m =64
S = Si si = 10
m = total number of frames Sy =127
. 10
a; = allocation for p; = %! m f=nes B
a, = 127 64! 59

Global vs. Local Allocation

Global replacement — process selects a
replacement frame from the set of all frames - “one
process can take a frame from another’

— Con: Process is unable to control its own page-
fault rate.

— Pro: makes available pages that are less used
pages of memory

Local replacement — each process selects from only
its own set of allocated frames

18

Thrashing

 Number of frames less than minimum
required for architecture — must

suspend process

— Swap-in, swap-out level of intermediate CPU
scheduling

» Thrashing = a process is busy
swapping pages in and out

Thrashing

Consider this:
. _CPU utilization low — e
increase processes
* A process needs more

pages — gets them
from other processes

CPU utilization

» Other process must
swap in — therefore
wait

* Ready queue shrinks —
therefore system
thinks it needs more
processes

degree of multiprogramming

19

Demand Paging and Thrashing

* Why does demand paging work?

Locality model

— as a process executes it moves from locality to

locality

— Localities may overlap

» Why does thrashing occur?
Collective size of localities > total memory size

all localities added together

34 H
- —tidere——
32 | | |
' Hi| |
i I el
I i
i i] & \“‘ [!
30 I il ill" T ‘i v
/ il YL
‘ : ‘v! il
| I
28 et
Hif T
» |
@ I
i3 |
S o6
5
e |
5 Ly
£ I
24 " Il " wllly I
I I | | (A
| - :
it oy e il
2 . T 11 i
it T il ‘ I ‘\ wﬂ i
L gl
R TIOR3y o Y
o ! it gt i1 il
% 20 ! + ‘HL Ty
= et | A | | e
o L L e
= P L ftpo \ ’
S 1 e T LT
H execution time ——»

Locality In

A Memory-

Reference
Pattern

20

Working-Set Model

A = working-set window = a fixed number of
page references

Example: 10,000 instructions

WSS, (working set of Process P)) =
total number of pages referenced in the most
recent A (change in time)

— if A too small will not encompass entire
locality

— if A too large will encompass several localities
— if A = o0 = will encompass entire program

D = Total Sum of WSS, = total demand frames

if D > m = Thrashing

Policy if D > m, then suspend one of the
processes

Working-set model

page reference table

...2615777751623412344434344413234443444...

T T

t, t

WS(t,) ={1,2,5,6,7} WS(t,) = {3,4}

21

Keeping Track of the Working Set

» Approximate WS with interval timer + a reference bit
« Example: A = 10,000 references

— Timer interrupts after every 5000 time units

— Keep in memory 2 bits for each page

— Whenever a timer interrupts: copy and sets the
values of all reference bits to 0
— If one of the bits in memory = 1 = page in working
set
* Why is this not completely accurate?

— because a page could be in and out of set within the 5000
references.

» Improvement = 10 bits and interrupt every 1000 time
units

Page-Fault Frequency Scheme

» Establish “acceptable” page-fault rate
— If actual rate too low, process loses a frame

— If actual rate too high, process gains a frame
» Used to tweek performance

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

22

Memory-Mapped Files

Memory-mapped file 1/O allows file 1/O to be treated as
routine memory access by mapping a disk block to a page
in memory

How?

— Afile is initially read using “demand paging”. A page-
sized portion of the file is read from the file system into a
physical page.

— Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

Simplifies file access by treating file I/O through memory
rather than read() write() system calls (less overhead)
Sharing: Also allows several processes to map the same file
allowing the pages in memory to be shared

Memory Mapped Files

r---- 1
1 u——
T
.
i F---- Do -r1_ 4
1 = [
2 T 11 3 <« :_: :- 2
3 i CTETT 6
4 Lt -y ! : tynd
5 --1—||:|_.> 6 "—‘:::l
6 —+f:—1-‘ ||: '
1 [1

[N 1!

I i R RN
processA ! LU _| 1] e ——f=1 , 1 process B
irtual memory: :- |:virtual memor

[N ::

N e i EEL

e 2 DIy I

physical memory
LA EAEIE]
disk file

23

WIN32 API

» Steps:
Create a file mapping for the file

Establish a view of the mapped file in the process’s
virtual address space

A second process can the open and
create a view of the mapped file in its
virtual address space

Other Issues -- Prepaging

* Prepaging
— To reduce the large number of page
faults that occurs at process startup

— Prepage all or some of the pages a
process will need, before they are
referenced

— But if prepaged pages are unused, 1/0
and memory was wasted

24

Other Issues — Page Size

» Page size selection must take
into consideration:
—fragmentation

—table size

—1/O overhead

—locality

Other Issues — Program Structure

* Program structure
— Int[128,128] data;
— Each row is stored in one page
— Program 1
for (j = 0; j <128; j++)
for (i =0; i< 128; i++)
datali,j] = 0;

128 x 128 = 16,384 page faults
— Program 2
for (i =0; i< 128; i++)
for (j = 0;) < 128; j++)
datali,j] = 0;

128 page faults

25

Other Issues — |I/O interlock

* 1/O Interlock — Pages must
sometimes be locked into
memory

» Consider I/O. Pages that are
used for copying a file from a
device must be locked from
being selected for eviction by a
page replacement algorithm.

Reason Why Frames Used For I/O
Must Be In Memory

A
buffer @

disk drive

26

Other Issues — TLB Reach

TLB Reach - The amount of memory accessible from
the TLB

TLB Reach = (TLB Size) X (Page Size)

Ideally, the working set of each process is stored in the
TLB. Otherwise there is a high degree of page faults.
Increase the Page Size. This may lead to an increase
in fragmentation as not all applications require a large
page size

Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use
them without an increase in fragmentation.

27

