
1

Virtual Memory

Gordon College
Stephen Brinton

Virtual Memory
• Background
• Demand Paging
• Process Creation
• Page Replacement
• Allocation of Frames
• Thrashing
• Demand Segmentation
• Operating System Examples

2

Background
• Virtual memory – separation of user logical

memory from physical memory.
– Only part of the program needed
– Logical address space > physical address

space.
• (easier for programmer)

– shared by several processes.
– efficient process creation.
– Less I/O to swap processes

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation

Larger Than Physical Memory

⇒

3

Shared Library Using Virtual
Memory

Demand Paging

• Bring a page into memory only when it is
needed
– Less I/O needed
– Less memory needed
– Faster response
– More users (processes) able to execute

• Page is needed ⇒ reference to it
– Page available ⇒ immediate access
– Invalid reference ⇒ abort
– Not-in-memory ⇒ bring to memory

4

Valid-Invalid Bit
• With each page table

entry a valid–invalid bit is
associated
(1 ⇒ in-memory, 0 ⇒ not-
in-memory)

• Initially valid–invalid bit is
set to 0 on all entries

• During address
translation, if valid–invalid
bit in page table entry is 0
⇒ page-fault trap

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

Example of a page
table snapshot:

33
34
36
23

Page Table: Some Pages Are Not in Main Memory

5

Page-Fault Trap
Reference to a page with invalid bit set - trap

to OS ⇒ page fault
Must decide???:

– Invalid reference ⇒ abort.
– Just not in memory ⇒

Get empty frame.
Swap page into frame.
Reset tables, validation bit = 1.
Restart instruction:

what happens if it is in the middle of an instruction?

Steps in Handling a Page
Fault

6

What happens if there is no free frame?

• Page replacement – find some page in
memory (not in use) & swap it out
– Algorithm - must be speedy
– performance – want an algorithm which

will result in minimum number of page
faults

• Same page may be brought into
memory several times

• LOCALITY OF REFERENCE principle

Performance of Demand Paging

• Page Fault Rate: 0 ≤ p ≤ 1 (probability of
page fault)
– if p = 0, no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead)

7

Demand Paging Example
• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has
been modified and therefore needs to be swapped
out

Page-switch time: around 8 ms.
EAT = (1 – p) x (200) + p(8 milliseconds)

= (1 – p) x (200) + p(8,000,000)
= 200 + 7,999,800p

220 > 200 + 7,999,800p
p < .0000025

Process Creation

• Virtual memory allows other benefits
during process creation:

- Copy-on-Write

- Memory-Mapped Files

8

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in
memory

If either process modifies a shared page, only then is
the page copied

• COW allows more efficient process creation as only
modified pages are copied

• Free pages are allocated from a pool of zeroed-out
pages (the pool is kept in case of a need to copy)

Need: Page Replacement
• Prevent over-

allocation of
memory by
modifying page-
fault service
routine to
include page
replacement

• Use modify
(dirty) bit to
reduce overhead
of page transfers
– only modified
pages are
written to disk

9

Basic Page Replacement

Page Replacement Algorithms

• GOAL: lowest page-fault rate
• Evaluate algorithm by running it

on a particular string of memory
references (reference string) and
computing the number of page
faults on that string

Example string: 1,4,1,6,1,6,1,6,1,6,1

10

Graph of Page Faults Versus The
Number of Frames

First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per

process)

• 4 frames

• FIFO Replacement – Belady’s Anomaly
– more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

11

FIFO Page Replacement

FIFO Illustrating Belady’s Anomaly

12

Optimal Algorithm
• Goal: Replace page that will not be used for longest period

of time
• 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?
• Used for measuring how well your algorithm performs:

“Well, is it at least 4% as good as Optimal Algorithm?”

1

2

3

4

6 page faults

4 5

Optimal Page Replacement

Optimal: 9 faults
FIFO: 15 faults
67% increase over the optimal

13

Optimal Page Replacement
• Requires FUTURE knowledge of the reference
string

– therefore (just like SJF) – IMPOSSIBLE TO
IMPLEMENT

• Therefore – used for comparison studies---
“…an algorithm is good because it is 12.3% of
optimal at worst and within 4.7% on average”

Least Recently Used (LRU) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation
– Every page entry has a counter; every time page is

referenced through this entry: counter = clock
– When a page needs to be changed, look at the counters to

determine which are to change

1

2

3 4

4 3

5

5

14

LRU Page Replacement

LRU faults ?

LRU Page Replacement

Optimal: 9 faults
FIFO: 15 faults

LRU: 12 faults

15

LRU Algorithm (Cont.)
• Stack implementation – keep a stack of page

numbers in a double link form:
– Page referenced:

• move it to the top (most recently used)
• Worst case: 7 pointers to be changed

– No search for replacement

A B C
Head

Tail

B A C
Head

Tail

1

2

3 5

4
Also Bʼs previous link

Use Of A Stack to Record The Most
Recent Page References

16

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially = 0
– When page is referenced bit set to 1
– Replacement: choose something with 0 (if one

exists). We do not know the order, however.
• Second chance (Clock replacement)

– Need reference bit
– If page to be replaced (in clock order) has

reference bit = 1 then:
• set reference bit 0
• leave page in memory
• replace next page (in clock order), subject to

same rules
– Can use byte for more resolution

Second-Chance (clock) Page-Replacement Algorithm

use a circular queue

17

Counting Algorithms
• Keep a counter of the number of

references that have been made to
each page

• LFU Algorithm: replaces page with
smallest count
- indicates an actively used page

• MFU Algorithm: based on the
argument that the page with the
smallest count was probably just
brought in and has yet to be used

Allocation of Frames
• Each process needs minimum number of pages:

depends on computer architecture
• Example: IBM 370 – 6 pages to handle special

MOVE instruction:
– instruction is 6 bytes, might span 2 pages
– 2 pages to handle from
– 2 pages to handle to

• Two major allocation schemes
– fixed allocation
– priority allocation

18

Fixed Allocation
• Equal allocation – For example, if there are 100

frames and 5 processes, give each process 20
frames.

• Proportional allocation – Allocate according to the
size of process

m
S
spa

m
sS

ps

i
ii

i

ii

!==

=

 =

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

! =

! =

=

=

=

a

a

s
s
m

i

Global vs. Local Allocation
• Global replacement – process selects a

replacement frame from the set of all frames - “one
process can take a frame from another”
– Con: Process is unable to control its own page-

fault rate.
– Pro: makes available pages that are less used

pages of memory

• Local replacement – each process selects from only
its own set of allocated frames

19

Thrashing
• Number of frames less than minimum

required for architecture – must
suspend process
– Swap-in, swap-out level of intermediate CPU

scheduling

• Thrashing ≡ a process is busy
swapping pages in and out

Thrashing
Consider this:
• CPU utilization low –

increase processes
• A process needs more

pages – gets them
from other processes

• Other process must
swap in – therefore
wait

• Ready queue shrinks –
therefore system
thinks it needs more
processes

20

Demand Paging and Thrashing

• Why does demand paging work?

Locality model
– as a process executes it moves from locality to

locality
– Localities may overlap

• Why does thrashing occur?
Collective size of localities > total memory size

 all localities added together

Locality In
A Memory-
Reference

Pattern

21

Working-Set Model
• Δ ≡ working-set window ≡ a fixed number of

page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (change in time)
– if Δ too small will not encompass entire

locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Total Sum of WSSi ≡ total demand frames
• if D > m ⇒ Thrashing
• Policy if D > m, then suspend one of the

processes

Working-set model

22

Keeping Track of the Working Set
• Approximate WS with interval timer + a reference bit
• Example: Δ = 10,000 references

– Timer interrupts after every 5000 time units
– Keep in memory 2 bits for each page
– Whenever a timer interrupts: copy and sets the

values of all reference bits to 0
– If one of the bits in memory = 1 ⇒ page in working

set
• Why is this not completely accurate?

– because a page could be in and out of set within the 5000
references.

• Improvement = 10 bits and interrupt every 1000 time
units

Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses a frame
– If actual rate too high, process gains a frame

• Used to tweek performance

23

Memory-Mapped Files
• Memory-mapped file I/O allows file I/O to be treated as

routine memory access by mapping a disk block to a page
in memory

• How?
– A file is initially read using “demand paging”. A page-

sized portion of the file is read from the file system into a
physical page.

– Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

• Simplifies file access by treating file I/O through memory
rather than read() write() system calls (less overhead)

• Sharing: Also allows several processes to map the same file
allowing the pages in memory to be shared

Memory Mapped Files

24

WIN32 API

• Steps:
Create a file mapping for the file
Establish a view of the mapped file in the process’s

virtual address space

A second process can the open and
create a view of the mapped file in its
virtual address space

Other Issues -- Prepaging
• Prepaging

– To reduce the large number of page
faults that occurs at process startup

– Prepage all or some of the pages a
process will need, before they are
referenced

– But if prepaged pages are unused, I/O
and memory was wasted

25

Other Issues – Page Size

• Page size selection must take
into consideration:
– fragmentation
– table size
– I/O overhead
– locality

Other Issues – Program Structure

• Program structure
– Int[128,128] data;
– Each row is stored in one page
– Program 1
 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

– Program 2
 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

26

Other Issues – I/O interlock
• I/O Interlock – Pages must

sometimes be locked into
memory

• Consider I/O. Pages that are
used for copying a file from a
device must be locked from
being selected for eviction by a
page replacement algorithm.

Reason Why Frames Used For I/O
Must Be In Memory

27

Other Issues – TLB Reach
• TLB Reach - The amount of memory accessible from

the TLB
• TLB Reach = (TLB Size) X (Page Size)
• Ideally, the working set of each process is stored in the

TLB. Otherwise there is a high degree of page faults.
• Increase the Page Size. This may lead to an increase

in fragmentation as not all applications require a large
page size

• Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use
them without an increase in fragmentation.

