
Understanding NoSQL

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 11/29/12

Agenda

• Check-in

• Why NoSQL?

• NoSQL Data Models

• Related Issues

• Homework 7

Check-in

Why NoSQL?

Pros and Cons of Relational

Databases

• Advantages

• Data persistence

• Concurrency – ACID, transactions, etc.

• Integration across multiple applications

• (Mostly) Standard Model – tables and SQL

• Disadvantages

• Impedance mismatch

• Integration databases vs. application databases

• Not designed for clustering

Impedance Mismatch

• Different representations of data when it is in the RDBMS vs.

in memory

• In-memory data structures use lists, dictionaries, nested and

hierarchical data structures

• Relational database only stores atomic values

• No lists or nested records

• Translating between these representations can be costly and

confusing

• Limits the productivity of application developers

• Object-relational mapping (ORM) can help with this

• Abstraction can lead to neglect of query performance tuning

Impedance Mismatch

Example

Integration vs. Application

Databases
• Integration databases support multiple applications

• Can be problematic if the applications have very different

needs and are maintained by separate teams

• SQL can be limiting as the only shared layer

• Web services have become a more flexible alternative

• Application databases are simpler to deal with

• Don’t need to worry about the world outside of an

application needing to know how its data is structured

• Security and flexibility decrease in priority

The Need for Clusters

• The Internet created the need to store and process huge
amounts of data

• Relational databases can scale “up” (bigger machine) , but not
“out” (many machines) as well

• Disk subsystem remains a single point of failure

• Distributing/fragmenting/sharding data is complicated

• High licensing costs for many database machines and CPUs

• Large web companies began developing their own alternative
technologies to deal with these issues

• Google’s BigTable and Amazon’s Dynamo

• Issues addressed by these solutions have become relevant to
smaller companies wanting to capture and analyze lots of data

The Emergence of NoSQL

• NoSQL first used as a name for an open source relational database
released in the late 1990’s

• Term as it is used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

• No official general definition for NoSQL, but common characteristics
include:

• Does not use the relational model (mostly)

• Generally open source projects (currently)

• Driven by the need to run on clusters

• Built for the need to run 21st century web properties

• Schema-less

• More of a movement than a technology

• Relational databases are not going away

• Polyglot persistence – use the type of data store most appropriate for the
situation

NoSQL Data Models

Aggregate Data Models

• Aggregate – a collection of related objects treated as a unit

• Particularly for data manipulation and consistency management

• Aggregate-oriented database – a database comprised of aggregate data
structures

• Supports atomic manipulation of a single aggregate at a time

• Good for use in clustered storage systems (scaling out)

• Aggregates make natural units for replication and fragmentation/sharding

• Aggregates match up nicely with in-memory data structures

• Use a key or ID to look up an aggregate record

• An aggregate-ignorant data model has no concept of how its components
can aggregate together

• Good when data will be queried in multiple ways

• Not so good for clusters

• Need to minimize data accesses, and including aggregates in the data helps with
this

Aggregate Database Example:

An Initial Relational Model

Aggregate Database Example:

An Aggregate Data Model

Aggregate Database Example:

Another Aggregate Model

Aggregate-Oriented Databases

• Key-value databases

• Stores data that is opaque to the database

• The database does cannot see the structure of records

• Application needs to deal with this

• Allows flexibility regarding what is stored (i.e. text or binary data)

• Document databases

• Stores data whose structure is visible to the database

• Imposes limitations on what can be stored

• Allows more flexible access to data (i.e. partial records) via querying

• Both key-value and document databases consist of aggregate records accessed by ID
values

• Column-family databases

• Two levels of access to aggregates (and hence, two pars to the “key” to access an aggregate’s data)

• ID – to look up aggregate record

• Column name – either a label for a value (name) or a key to a list entry (order id)

• Columns are grouped into column families

Column-Family Database

Example

Relationships

• Aggregates contain ID attributes to related aggregates

• Require multiple database accesses to traverse relationships

• One to lookup ID(s) of related aggregate(s) in main aggregate

• One to retrieve each of the related aggregates

• Many NoSQL databases provide mechanisms to make relationships
visible to the database (to make link-walking easier)

• Updates to relationships require the application to maintain
consistency since atomicity is limited to each aggregate

• Aggregate databases become awkward when it is necessary to
navigate around many aggregates

• Graph databases – small nodes connected by many edges

• Make navigating complex relationships fast

• Linking nodes is done at time of insert, and not at query time

Graph Database Example

Schema-less Databases

• Common to all NoSQL databases – also called emergent schemas

• Advantages

• No need to predefine data structure

• Easy to change structure of data as time passes

• Good support for non-uniform data

• Disadvantages

• Potentially inconsistent names and data types for a single value

• Example: quantity, Quantity, QUANTITY, qty, count, quanity …

• Example: 5, 5.0, five, V …

• The database does not enforce these things because it has no knowledge of the implicit
schema

• Management of the implicit schema migrates into the application layer

• Need to look at code to understand what data and structure is present

• No standard location or method for implementing the logic to do this

• What do you do if multiple applications need access to the database?

Materialized Views

• Querying across aggregates is expensive

• Example: database with customer aggregates containing orders –
efficient customer-level queries

• Inefficient to query across orders (i.e. tally data from orders placed in the
last week)

• NoSQL databases can pre-compute expensive query results and
store them in materialized views

• Term borrowed from relational databases – a view that is cached

• Enables faster access of data organized differently from primary
aggregates

• Keeping materialized views up-to-date

• Eager approach – update view with the base data

• Good for frequent reads of view that needs to be kept fresh

• Regular batch of view updates

Related Issues

Distributed Databases and Consistency with NoSQL

Version Stamps

Map-Reduce Pattern

Distribution Models

• Single server – simplest model, everything on one machine (or node)

• Sharding (fragmentation) – storing data (aggregates) across multiple
nodes

• Auto-sharding -- some NoSQL databases handle the logistics of sharding
so that the application does not have to

• Replication – duplicate data (aggregates) over multiple nodes

• Master-slave (primary copy) replication -- one master responsible for
updates, one or more slaves to support reads

• Peer-to-peer (multi-master) replication

• Each node does reads and writes, and communicates its changes to other
nodes

• Eliminates any one master as a single point of failure

• Drawbacks include complex synchronization system and inconsistency
issues

• Write-write conflicts – when two users update the same data item on separate
nodes

Consistency

• Update consistency – ensuring serial database changes

• Pessimistic approach – prevents conflicts from occurring (i.e. locking)

• Optimistic approach – detects conflicts and sorts them out (i.e. validation)

• Conditional update – just before update, check to see if the value has
changed since last read

• Write-write conflict resolution – automatically or manually merge the
updates

• Trade-off between safety and “liveness” (responsiveness)

• Read consistency – ensuring users read the same value for data at a
given time

• Logical consistency vs. replication consistency

• Sticky sessions (session affinity) – assign a session to a given database node
for all of its work to ensure read-your-writes consistency

Diluting the ACID
• Relaxed consistency

• CAP Theorem – pick two of these three

• Consistency

• Availability – ability to read and write data to a node in the cluster

• Partition tolerance – cluster can survive network breakage that separates it into
multiple isolated partitions

• If there is a network partition, need to trade off availability of data vs.
consistency

• Depending on the domain, it can be beneficial to balance consistency with latency
(performance)

• BASE – Basically Available, Soft state, Eventual consistency

• Relaxed durability

• Replication durability – what happens if a replica is not available to receive
updates, but still servicing traffic?

• Do not necessarily need to contact all replicas to preserve strong consistency
with replication; just a large enough quorum.

Version Stamps

• Provide a means of detecting concurrency conflicts

• Each data item has a version stamp which gets incremented each time the
item is updated

• Before updating a data item, a process can check its version stamp to see if
it has been updated since it was last read

• Implementation methods

• Counter – requires a single master to “own” the counter

• GUID (Guaranteed Unique ID) – can be computed by any node, but are
large and cannot be compared directly

• Hash the contents of a resource

• Timestamp of last update – node clocks must be synchronized

• Vector stamp – set of version stamps for all nodes in a distributed
system

• Allows detection of conflicting updates on different nodes

Map-Reduce
• Design pattern to take advantage of clustered machines to do processing in parallel

• While keeping as much work and data as possible local to a single machine

• Map function

• Takes a single aggregate record as input

• Outputs a set of relevant key-value pairs

• Values can be data structures

• Each instance of the map function is independent from all others

• Safely parallelizable

• Reduce function

• Takes multiple map outputs with the same key as input

• Summarizes (or reduces) there values to a single output

• Map-reduce framework

• Arranges for map function to be applied to pertinent documents on all nodes

• Moves data to the location of the reduce function

• Collects all values for a single pair and calls the reduce function on the key and value collection

• Programmers only need to supply the map and reduce functions

Map-Reduce Example (Map)

Map-Reduce Example

(Reduce)

Partitioning, Combining, and

Composing
• Reduce operations use values from a single key

• Partitioning by key allows for parallel reduce work

• Combinable reducer -- Reducers that have the same form for input and
output can be combined into pipelines

• Further improves parallelism and reduces the amount of data to be
transferred

• Map-reduce compositions

• Can be composed into pipelines in which the output of one reduce is the
input to another map

• Can be useful to store result of widely-used map-reduce calculation

• Saved results can sometimes be updated incrementally

• For additive combinable reducers, the existing result can be combined with new
data

Reduce Partitioning Example

Combinable Reducer Example

Multi-Stage Map-Reduce

Example

Homework 7

