Understanding NoSQL

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 11/29/12

Agenda

Check-1n

Why NoSQL?
NoSQL Data Models
Related Issues

Homework 7

Check-1n

Why NoSQL?

Pros and Cons of Relational
Databases

* Advantages
+ Data persistence
* Concurrency — ACID, transactions, etc.

- Integration across multiple applications
* (Mostly) Standard Model — tables and SQL

* Disadvantages
* Impedance mismatch
- Integration databases vs. application databases
* Not designed for clustering

Impedance Mismatch

Different representations of data when it is in the RDBMS vs.
In memory

* In-memory data structures use lists, dictionaries, nested and
hierarchical data structures

- Relational database only stores atomic values
* No lists or nested records

 Translating between these representations can be costly and
confusing

« Limits the productivity of application developers

Object-relational mapping (ORM) can help with this

* Abstraction can lead to neglect of query performance tuning

Impedance Mismatch
Example

.

customer: Ann

orders

line items:

customers
0321293533

0321601912

der lines
0131495054)

$96
ey
$51

payment details:

Card: Amex
CC Number: 12345
expiry: 04/2001 \

=}

Figure 1.1. An order, which looks like a single aggregate structure in the UI, is split into
many rows from many tables in a relational database

Integration vs. Application
Databases

» Integration databases support multiple applications

Can be problematic if the applications have very different
needs and are maintained by separate teams

* SQL can be limiting as the only shared layer
Web services have become a more flexible alternative

* Application databases are simpler to deal with

Don’t need to worry about the world outside of an
application needing to know how its data is structured

Security and flexibility decrease in priority

The Need for Clusters

The Internet created the need to store and process huge
amounts of data

Relational databases can scale “up” (bigger machine) , but not
“out” (many machines) as well

* Disk subsystem remains a single point of failure
 Distributing/fragmenting/sharding data is complicated
* High licensing costs for many database machines and CPUs

Large web companies began developing their own alternative
technologies to deal with these 1ssues

Google’s BigTable and Amazon’s Dynamo

Issues addressed by these solutions have become relevant to
smaller companies wanting to capture and analyze lots of data

The Emergence of NoSQL

NoSQL first used as a name for an open source relational database
released in the late 1990’s

Term as it is used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

No official general definition for NoSQL, but common characteristics
include:

* Does not use the relational model (mostly)
Generally open source projects (currently)
Driven by the need to run on clusters
Built for the need to run 21 century web properties
Schema-less

More of a movement than a technology
+ Relational databases are not going away

* Polyglot persistence — use the type of data store most appropriate for the
situation

NoSQL Data Models

Aggregate Data Models

Aggregate — a collection of related objects treated as a unit
Particularly for data manipulation and consistency management

Aggregate-oriented database — a database comprised of aggregate data
structures

Supports atomic manipulation of a single aggregate at a time

Good for use in clustered storage systems (scaling out)

« Aggregates make natural units for replication and fragmentation/sharding
Aggregates match up nicely with in-memory data structures

Use a key or ID to look up an aggregate record

An aggregate-ignorant data model has no concept of how its components
can aggregate together

Good when data will be queried in multiple ways

Not so good for clusters

* Need to minimize data accesses, and including aggregates in the data helps with
this

Aggregate Database Example:
An Initial Relational Model

Customer

1

Order

name

Y
1

% *

Order Payment
Billing
Address cardNumber
txnid
—————————

1

Address
street
city
state]

post code shipping Address
S

Figure 2.1. Data model oriented around a relational database (using UML
notation [Fowler UML])

Aggregate Database Example:
An Aggregate Data Model

// in customers

{
"id":1,

L1 LI L] 1 "
name name" :"Martin",

Customer

"billingAddress":[{ "city" :"Chicago"}]
1

billing Address |#
Address

// in orders

{
* % | order payment 5o

street 1
city -

{
post code tnid "productId":27,

1| billing Address "pricet: 32.45,
"productName": "NoSQL Distilled"
}
] F
"shippingAddress":[{ "city":"Chicago"}]
B — "orderPayment" :[
{
Figure 2.3. An aggregate data model "ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"pillingAddress": {"city": "Chicago"}

Order ltem Payment "customerId":1,
"orderItems":[

Aggregate Database Example:
Another Aggregate Model

Customer {.-";" in customers

name "customer": |
' lfid“ H 1 ’
"name": "Martin",
"billingAddress": [{ "city": "Chicago"}],
"orders": [

{

"id":98,

"customerId™:1,

billing Address | %

Address

"orderItems":[
street 1 {
city shipping Address "productId":27,

state " i m. 32.45
post code #* % | order payment pricen: o

_— "productName": "NoSQL Distilled"
Order Item Payment
billing Address — y }

price ceinfo 1y

txnid "shippingAddress":[{ "city":"Chicago"}]
* "orderPayment" :[

{

"cecinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"pillingAddress": { "city": "Chicagao"}
1,

Figure 2.4. Embed all the objects for customer and the customer’s orders !
}

Aggregate-Oriented Databases

Key-value databases
+ Stores data that is opaque to the database
» The database does cannot see the structure of records
* Application needs to deal with this
+ Allows flexibility regarding what is stored (i.e. text or binary data)

Document databases
+ Stores data whose structure is visible to the database
* Imposes limitations on what can be stored
» Allows more flexible access to data (i.e. partial records) via querying

Both key-value and document databases consist of aggregate records accessed by ID
values

Column-family databases

« Two levels of access to aggregates (and hence, two pars to the “key” to access an aggregate’s data)
* ID - to look up aggregate record
* Column name — either a label for a value (name) or a key to a list entry (order id)

* Columns are grouped into column families

Column-Family Database
Example

column family column key

\ \ GﬂUIlilgl‘I\ue

profile name

bilingAddress

payment

ODR1001

QDR1002

ODR1003

ODR1004

Figure 2.5. Representing customer information in a column-family structure

Relationships

Aggregates contain ID attributes to related aggregates
Require multiple database accesses to traverse relationships
* One to lookup ID(s) of related aggregate(s) in main aggregate
* One to retrieve each of the related aggregates

Many NoSQL databases provide mechanisms to make relationships
visible to the database (to make link-walking easier)

Updates to relationships require the application to maintain
consistency since atomicity is limited to each aggregate

Aggregate databases become awkward when it is necessary to
navigate around many aggregates

Graph databases — small nodes connected by many edges
Make navigating complex relationships fast
« Linking nodes is done at time of insert, and not at query time

Graph Database Example

friend

employee
employee

friend | Barbara
friend E
Y b
n Databases
Or.
Refactoring ¥
\ catetory

NoSQL
Distilled

Database
Refactoring

Figure 3.1. An example graph structure

Schema-less Databases

Common to all NoSQL databases — also called emergent schemas

Advantages

* No need to predefine data structure

« Easy to change structure of data as time passes
* Good support for non-uniform data

Disadvantages

- Potentially inconsistent names and data types for a single value
« Example: quantity, Quantity, QUANTITY, qty, count, quanity ...
« Example: 5, 5.0, five, V ...

« The database does not enforce these things because it has no knowledge of the implicit
schema

* Management of the implicit schema migrates into the application layer

* Need to look at code to understand what data and structure is present
* No standard location or method for implementing the logic to do this
« What do you do if multiple applications need access to the database?

Materialized Views

Querying across aggregates 1s expensive

Example: database with customer aggregates containing orders —
efficient customer-level queries

 Inefficient to query across orders (i.e. tally data from orders placed in the
last week)

NoSQL databases can pre-compute expensive query results and
store them 1n materialized views

Term borrowed from relational databases — a view that is cached

Enables faster access of data organized differently from primary
aggregates

Keeping materialized views up-to-date
Eager approach — update view with the base data
* Good for frequent reads of view that needs to be kept fresh
Regular batch of view updates

Related Issues

Distributed Databases and Consistency with NoSQL
Version Stamps
Map-Reduce Pattern

Distribution Models

Single server — simplest model, everything on one machine (or node)

Sharding (fragmentation) — storing data (aggregates) across multiple
nodes

Auto-sharding -- some NoSQL databases handle the logistics of sharding
so that the application does not have to

Replication — duplicate data (aggregates) over multiple nodes

Master-slave (primary copy) replication -- one master responsible for
updates, one or more slaves to support reads

Peer-to-peer (multi-master) replication
« Each node does reads and writes, and communicates its changes to other
nodes
Eliminates any one master as a single point of failure

« Drawbacks include complex synchronization system and inconsistency
issues

Write-write conflicts — when two users update the same data item on separate
nodes

Consistency

« Update consistency — ensuring serial database changes
* Pessimistic approach — prevents conflicts from occurring (i.e. locking)
* Optimistic approach — detects conflicts and sorts them out (i.e. validation)

* Conditional update — just before update, check to see if the value has
changed since last read

» Write-write conflict resolution — automatically or manually merge the
updates

Trade-off between safety and “liveness” (responsiveness)

* Read consistency — ensuring users read the same value for data at a
given time

* Logical consistency Vs. replication consistency

* Sticky sessions (session affinity) — assign a session to a given database node
for all of its work to ensure read-your-writes consistency

Diluting the ACID

« Relaxed consistency

* CAP Theorem — pick two of these three
* Consistency
 Availability — ability to read and write data to a node in the cluster

* Partition tolerance — cluster can survive network breakage that separates it into
multiple i1solated partitions

* If there 1s a network partition, need to trade off availability of data vs.
consistency

* Depending on the domain, it can be beneficial to balance consistency with latency
(performance)

* BASE - Basically Available, Soft state, Eventual consistency

* Relaxed durability

* Replication durability — what happens if a replica is not available to receive
updates, but still servicing traffic?

* Do not necessarily need to contact all replicas to preserve strong consistency
with replication; just a large enough quorum.

Version Stamps

Provide a means of detecting concurrency conflicts

Each data item has a version stamp which gets incremented each time the
item 1s updated

Before updating a data item, a process can check its version stamp to see if
it has been updated since it was last read

Implementation methods
Counter — requires a single master to “own” the counter

GUID (Guaranteed Unique ID) — can be computed by any node, but are
large and cannot be compared directly

Hash the contents of a resource
Timestamp of last update — node clocks must be synchronized

Vector stamp — set of version stamps for all nodes in a distributed
system

Allows detection of conflicting updates on different nodes

Map-Reduce

Design pattern to take advantage of clustered machines to do processing in parallel
* While keeping as much work and data as possible local to a single machine

Map function

+ Takes a single aggregate record as input
* Qutputs a set of relevant key-value pairs
* Values can be data structures

+ Each instance of the map function is independent from all others
» Safely parallelizable

Reduce function
+ Takes multiple map outputs with the same key as input
+ Summarizes (or reduces) there values to a single output

Map-reduce framework

Arranges for map function to be applied to pertinent documents on all nodes

Moves data to the location of the reduce function

Collects all values for a single pair and calls the reduce function on the key and value collection
Programmers only need to supply the map and reduce functions

Map-Reduce Example (Map)

Figure 7.1. A map function reads records from the database and emits
key-value pairs.

Map-Reduce Example
(Reduce)

price: $26
quantity: 8

price: $36

D ~ reduce ,

price: $44
quantity: 14

Figure 7.2. A reduce function takes several key-value pairs with the same key
and aggregates them into one.

Partitioning, Combining, and
Composing

Reduce operations use values from a single key
Partitioning by key allows for parallel reduce work

Combinable reducer -- Reducers that have the same form for input and
output can be combined into pipelines

Further improves parallelism and reduces the amount of data to be
transferred

Map-reduce compositions

Can be composed into pipelines in which the output of one reduce 1s the
input to another map

Can be useful to store result of widely-used map-reduce calculation

» Saved results can sometimes be updated incrementally

For additive combinable reducers, the existing result can be combined with new
data

Reduce Partitioning Example

Figure 7.3. Partitioning allows reduce functions to run in parallel on different
keys.

Combinable Reducer Example

26
12
36

8

puerh
genmaicha
puerh
genmaicha
puerh
genmaicha
puerh
puerh

16
40
6

ﬂ'

o . e reduce
U

L —

Figure 7.4. Combining reduces data before sending it across the network.

Multi-Stage Map-Reduce
Example

Lmq/‘r'/

product: puerh
year: 2010
month: 12
quantity: 1000
"

Figure 7.8. A calculation broken down into two map-reduce steps, which will
be expanded in the next three figures

Homework 7

