The Exponential Function Revisited

Back in Chapter 0 the irrational number \(e \) was introduced and defined as
\[
e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n
\]
but not much justification was given for this.

We have been using \(e \) [called "e" in honor of Euler] primarily as the base in the exponential function \(e^x \).

But what is this function really? How should we interpret this given that \(e \) is irrational and \(x \) can be irrational?

DEF \(e \) is the number for which \(\ln e = 1 \).

This definition uses the \(\ln x \) function previously defined as
\[
\ln x = \int_1^x \frac{1}{t} \, dt
\]
so we could also say that \(e \) is the number for which
\[
\int_1^e \frac{1}{t} \, dt = 1
\]

Starting from this definition we will explore the function \(e^x \) and find that it is the same function we have been using all along.

Question: What does \(2^x \) mean?

"2 raised to the \(x \) power" – but what does this mean?
"2 times itself \(x \) times" – OK – if \(x \) is a whole number...

Perhaps we don’t understand this simple operation as much as we thought...

We proceed by examining \(e^x \).
The Exponential Function Revisited

Case 1: x is an integer.

If $x=0$ then $e^x = 1$.

If $x>0$ then $e^x = \underbrace{ee...e}_{x\text{ factors}}$.

If $x<0$ then let $y=-x$ so $e^x = \frac{1}{e^y} = \underbrace{eee...e}_{y\text{ factors}}$.

Case 2: x is rational: $x = \frac{p}{q}$ for integers p and q.

If $p \geq 0, q > 0$ then $e^x = e^{\frac{p}{q}} = (e^p)^{\frac{1}{q}} = q\sqrt[e^p]{e}$.

Case 1 covers e^p, and, although they may be difficult to find, we know in principle how to find n^{th} roots of real numbers.

If $p \leq 0, q < 0$ then $e^x = e^{\frac{p}{q}} = e^{-\frac{p}{q}} = \frac{1}{q\sqrt[e^{-p}]{e}}$.

If $p \leq 0, q > 0$ or $p > 0, q < 0$ then $e^x = e^{\frac{p}{q}} = e^{-\frac{p}{q}}$.

So $e^x = \sqrt[q]{e^{-p}}$.

Case 3: x is irrational. Now we proceed slowly.

Let $f(x) = \ln x$, with $x>0$. Observe that $f'(x) = \frac{1}{x} > 0$.

So f is strictly increasing and therefore is one-to-one and invertible.

When x is rational we notice that $\ln(e^x) = x \cdot \ln e$, a property already demonstrated. Since we defined e as the number for which $\ln e = 1$ we have
The Exponential Function Revisited

\[\ln(e^x) = x \ln e = x \]

or

\[f(e^x) = x \]

This shows that, at least for rational numbers \(x \),

\[f^{-1}(x) = e^x \]

Since \(f^{-1}(x) = \ln x \) "undoes" what \(e^x \) "does".

Because we can find two rationals which bracket any given irrational within an arbitrarily small interval, we decide to define \(e^x \) for irrational \(x \) as:

DEF For irrational \(x \) we define \(y = e^x \) to be that number for which

\[\ln y = \ln e^x = x \]

So, if \(x \) is irrational, \(e^x \) is defined to be the number \(y \) that satisfies \(\ln y = x \).

This means that \(\ln x = \log_e x \), i.e. \(\ln x \) is the base \(e \) logarithm.

So, we know how to compute \(e^x \) for all real numbers \(x \).

Finally, since \(e^x \) is the inverse of \(\ln x \), we have that \(\ln x \) is the inverse of \(e^x \):

\[\ln e^x = x \quad , \quad e^{\ln x} = x \]
The Exponential Function Revisited

Thm. For \(r, s \) any real numbers and \(t \) any rational number:

(i) \(e^{r+s} = e^r e^s \)

(ii) \(\frac{e^r}{e^s} = e^{r-s} \)

(iii) \((e^r)^t = e^{rt} \)

Proof of i) \(\ln (e^{r+s}) = \ln (e^r) + \ln (e^s) = r \ln e + s \ln e = r + s \)

\(e^{\ln (e^{r+s})} = e^{r+s} = e^{r+s} \)

How are we to compute functions like \(2^x \) when \(x \) is irrational?

If we want to compute \(a^x \) we can set \(y = a^x \).

Then \(y = e^{\ln y} = e^{\ln a^x} = e^{x \ln a} \)

We know how to compute \(e^x \) so we can compute \(e^{(x \ln a)} \)

\[a^x = e^{(x \ln a)} \]

Derivative of \(e^x \)

What is \(\frac{d}{dx} e^x \)?

Start with \(y = e^x \); so \(x = \ln y \).

Differentiating implicitly:

\[\frac{d}{dx} x = \frac{d}{dx} \ln y \quad \Rightarrow \quad 1 = \frac{1}{y} \cdot \frac{dy}{dx} \]
The Exponential Function Revisited

So \[
\frac{dy}{dx} = y \Rightarrow \frac{d}{dx} e^x = e^x
\]

This also means \[
\int e^x \, dx = e^x + C
\]

How about \(\frac{d}{dx} a^x \)?

\[
\frac{d}{dx} a^x = \frac{d}{dx} e^{\ln a^x} = \frac{d}{dx} e^{\ln a} = a^x \ln a
\]

\[
\int a^x \, dx = \frac{a^x}{\ln a} + C
\]

Examples

Find the extrema and inflection points of \(f(x) = xe^{2x+1} \)

\[
f'(x) = e^{2x+1} + 2xe^{2x+1}
\]

Continuous so extrema are found where \(f'(x) = 0 \)

\[
e^{2x+1} + 2xe^{2x+1} = 0
\]

\[
1 + 2x = 0
\]

\[
x = -\frac{1}{2}
\]

\[
f''(x) = 2e^{2x+1} + 2e^{2x+1} + 4xe^{2x+1} = 4(1+x)e^{2x+1}
\]

Since \(f''(-\frac{1}{2}) = 2 > 0 \) we know \(f(x) \) is concave up at \(x = -\frac{1}{2} \)

so \(x = -\frac{1}{2} \) is the location of a minimum

Local minimum of \(f(x) = xe^{2x+1} \) occurs at \(x = -\frac{1}{2} \)
The Exponential Function Revisited

\[f''(x) = 0 \quad \text{gives} \quad 0 = 4(1 + x)e^{2x+1} \]
\[0 = 1 + x \]
\[x = -1 \]

When \(x < -1 \), \(f''(x) < 0 \) so curve is concave down.
When \(x > -1 \), \(f''(x) > 0 \) so curve is concave up.

\[x = -1 \] is an inflection point of \(f(x) = xe^{2x+1} \)

Ex. \(\int 3^{2x} \, dx \)
\[u = 2x \quad du = 2 \, dx \]
\[\frac{1}{2} \int 3^u \, du = \frac{1}{2} \frac{3^u}{\ln 3} + C \]

\[= \frac{3^{2x}}{2\ln 3} + C \]

Ex. \(\int \frac{2^{\ln x}}{x} \, dx \)
\[u = \ln x \quad du = \frac{1}{x} \, dx \]
\[\int 2^u \, du = \frac{2^u}{\ln 2} + C = \frac{2^{\ln x}}{\ln 2} + C \]

Ex. \(\int \sin x \, e^{1 + \cos x} \, dx \)
\[u = 1 + \cos x \quad du = -\sin x \, dx \]
\[-\int -\sin x \, e^{1 + \cos x} \, dx = -\int e^u \, du = -e^u + C = -e^{1 + \cos x} + C \]

OR.
\[\int \sin x \, e^{1 + \cos x} \, dx = \int \sin x \, e^u \, du \]
\[= -e^u + C \quad \text{if} \ u = \cos x \]
\[= -e[e^u + C] = -e e^{\cos x} - ce = -e^{1 + \cos x} - ce \]

just a constant...