Volume of Revolution using Cylindrical Shells

Find the volume swept out when the area between the curve $y = 1 - x^2$ and the x-axis is rotated about the line $x = 3$.

![Graph of y = 1 - x^2](image)

We can proceed as we have before:

$$dv = \pi r_1^2 \, dy - \pi r_2^2 \, dy$$

where $r_1 = 3 + \sqrt{1-y}$ and $r_2 = 3 - \sqrt{1-y}$

So

$$dv = \pi ((3 + \sqrt{1-y})^2 - (3 - \sqrt{1-y})^2) \, dy$$

$$= \pi [(9 + 6\sqrt{1-y} + 1-y) - (9 - 6\sqrt{1-y} + 1-y)] \, dy$$

$$= \pi (12\sqrt{1-y}) \, dy$$

So

$$V = \int_0^1 12\pi \sqrt{1-y} \, dy$$

$u = 1-y$, $u(0) = 1$, $u(1) = 0$

$$- 12\pi \left[\sqrt{u} \, du \right]_0^1 = 12\pi \frac{2}{3} u^{3/2} \bigg|_0^1 = 8\pi$$
Volume of Revolution using Cylindrical Shells

Alternatively, we could slice the area vertically and revolve them to form cylindrical shells.

If we cut the shell and unroll it, we will get a rectangular solid with thickness dx (or Δx), height $y = 1 - x^2$, and length $2\pi r$ where r is the radius of revolution.

In this case $r = 3 - x$.

So $dV = 2\pi r \cdot h \cdot dx$

$= 2\pi (3-x) \cdot (1-x^2) \, dx \Rightarrow V = \int_{-1}^{1} 2\pi (3-x)(1-x^2) \, dx$

$V = 2\pi \int_{-1}^{1} (3-x-3x^2+x^3) \, dx = 2\pi \left[3x - \frac{x^2}{2} - x^3 + \frac{x^4}{4} \right]_{-1}^{1}$

$V = 2\pi \left[3 - \frac{1}{2} - 1 + \frac{1}{4} \right] - 2\pi \left[-3 - \frac{1}{2} + 1 + \frac{1}{4} \right]$

$V = 2\pi \left[6 - 2 \right] = 8\pi$

In this case, the integral was slightly more involved than in the previous approach, but finding dV was more natural and less complicated.