Autonomous Equations and Population Dynamics

The first order ode \(\frac{dy}{dt} = f(y) \) is called autonomous.

The RHS depends on \(y \) alone - not on the independent variable \(t \).

We have seen several of these - most significantly \(y' = ry \), the exponential growth/decay equation.

One interesting fact about autonomous equations is that their direction fields are easy to draw because \(f \) does not depend on \(t \).

Exponential Growth: \(y' = ry \)
- simple model that works well for populations with no impediments to growth.
- of course, growth cannot occur indefinitely.

Logistic Growth.

Let's modify the exponential growth eq. so that

1. \(y' \approx ry \) when \(y \) is small
2. \(y' \rightarrow 0 \) as \(y \rightarrow K \) where \(K \) is the population that can be sustained.

\[y' = r\cdot y \left(1 - \frac{y}{K} \right) \]
- close to 1 when \(y \) is close to zero
- close to 0 when \(y \) is close to \(K \)
- positive if \(y < K \), negative if \(y > K \)
 Autonomous Equations and Population Dynamics

This gives the logistic growth equation

$$\frac{dy}{dt} = r(1-\frac{y}{K})y$$

- r is the intrinsic growth rate
- K is the saturation level or environmental carrying capacity

Ex. \[\frac{dy}{dt} = \frac{1}{2} (1-\frac{y}{1}) y = \frac{1}{2}(1-y)y \quad r = \frac{1}{2} \quad K = 1 \]

The direction field for this equation looks like

Consider \[\frac{dy}{dt} = r(1-\frac{y}{K})y, \quad r > 0, \quad K > 0 \]

If $y > 0$ and $y < K$ then $r(1-\frac{y}{K}) > 0 \Rightarrow y$ increases
If $y > 0$ and $y > K$ then $r(1-\frac{y}{K})y < 0 \Rightarrow y$ decreases

So, the solution $y(t)$ will approach K as $t \to \infty$
Autonomous Equations and Population Dynamics

Given \(\frac{dy}{dt} = f(y) = r\left(1 - \frac{y}{K}\right)y \) we can plot \(f(y) \) vs. \(y \)

Equilibrium point \(\frac{dy}{dt} = 0 \) (same as critical point)

Value of \(y \) for which \(\frac{dy}{dt} \) is positive, \(y \) is decreasing
Value of \(y \) for which \(\frac{dy}{dt} \) is negative meaning \(y(t) \) is increasing

This is why \(K \) is called the saturation level: If \(y \) is above it, \(y \) will decrease towards it. If \(y \) is below it, \(y \) will increase towards it.

The points 0 and \(K \) are called critical points.

The critical points in these problems can be characterized as being asymptotically stable or unstable
Autonomous Equations and Population Dynamics

To solve the logistic equation \(\frac{dy}{dt} = r(1 - \frac{y}{K})y \), we separate variables:

\[
\frac{dy}{(1 - \frac{y}{K})y} = r \, dt
\]

To integrate the LHS, we can use partial fractions:

\[
\frac{1}{(1 - \frac{y}{K})y} = \frac{A}{1 - \frac{y}{K}} + \frac{B}{y} \Rightarrow A = \frac{1}{K}, \quad B = 1
\]

So,

\[
\int \frac{dy}{K(1 - \frac{y}{K})} + \int \frac{dy}{y} = r \int dt
\]

\[-\ln|K-y| + \ln|y| = rt + C
\]

\[-\ln|\frac{y}{K}| = rt + C
\]

\[\frac{y}{K} = C e^{rt}
\]

If \(y(0) = y_0 \) then \(\frac{y_0}{K-y_0} = C \), so \(\frac{y}{K} = \frac{y_0}{K-y_0} e^{rt} \).

Solving for \(y \):

\[
\frac{1}{y} = \frac{y_0}{K-y_0} e^{-rt} \Rightarrow \frac{K-y}{y} = \frac{y_0}{K-y_0} e^{-rt}
\]

\[
\frac{K}{y} = \frac{(K-y_0) e^{-rt} + y_0}{y_0} \Rightarrow \frac{y}{K} = \frac{y_0}{y_0 + (K-y_0) e^{-rt}}
\]

\[
y = \frac{K y_0}{y_0 + (K-y_0) e^{-rt}}
\]

Notice that as \(t \to \infty \), \(y \to K y_0/y_0 = K \) if \(r > 0 \).
Ex. Let \(\frac{dy}{dt} = f(y) \) be \(\frac{dy}{dt} = 2y(1- \frac{e^y}{2}) \) \(-\infty < y < \infty\)
and sketch \(f(y) \) vs. \(y \). Find the critical points
and classify them as asymptotically stable or
unstable.

\[
\begin{align*}
0 & = 2y(1- \frac{1}{2}e^y) \\
& \Rightarrow y = 0 \text{ and } y = \ln 2 \approx 0.6931
\end{align*}
\]

\(y = 0 \) is an unstable critical point since
\(f(y) > 0 \) when \(y < 0 \), \(f(y) < 0 \) when \(y > 0 \)

\(y = \ln 2 \approx 0.6931 \) is an asymptotically stable critical point since \(f(y) > 0 \) when \(y < \ln 2 \)
and \(f(y) < 0 \) when \(y > \ln 2 \).