8.1 Euler's Method (Tangent Line Method)

Consider the IVP
\[
\begin{align*}
\frac{dy}{dt} &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

We will consider this solved if, on the interval in which the solution exists, we can obtain the value of \(y \) for any particular value of \(t \).

Example (Textbook) \(y' = \frac{1-t+4y}{f(t, y)} \), \(y(0) = 1 \)

Let's try and construct the solution graphically.

Basic idea is that we step from our initial point a distance \(h \) in the horizontal direction and \(hf(t_0, y_0) \) in the vertical direction.

\(y(0.25) = y(0) + hf(0, y(0)) \)

Euler's Method

Given \(t_0 \) and \(y_0 \) and stepsize \(h \)

\[
\begin{align*}
y_{k+1} &= y_k + h f(t_k, y_k) \\
t_{k+1} &= t_k + h = t_0 + (k+1)h
\end{align*}
\]
Notice that we can obtain the formula for Euler's Method using a Taylor Series:

\[y(t_{n+1}) = y(t_n) + y'(t_n) \cdot h + y''(\xi_n) \frac{h^2}{2!} \]

- Remainder term
- for some \(\xi_n \) between \(t_n \) and \(t_{n+1} \)

If we ignore the last term \(y''(\xi_n) \frac{h^2}{2!} \) then we see that we have the Euler iteration formula:

\[y(t_{n+1}) = y(t_n) + h f(t_n, y_n) \]

or

\[y_{n+1} = y_n + h f(t_n, y_n) \]

There are other ways to generate this formula as well.
Consider \(y' = 3 - 2y \) autonomous, 1\(^{st}\) order, linear.

Solution \(y = -\frac{3}{2}(e^{-2t} - 1) + y_0 e^{-2t} \)

Applying Euler method with \(h = 0.1 \), \(y_0 = 1 \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>Exact</th>
<th>Euler</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.4323</td>
<td>1.4463</td>
<td>-0.0140</td>
</tr>
<tr>
<td>2</td>
<td>1.4908</td>
<td>1.4942</td>
<td>-0.0034</td>
</tr>
<tr>
<td>3</td>
<td>1.4988</td>
<td>1.4994</td>
<td>-0.0006</td>
</tr>
<tr>
<td>4</td>
<td>1.4998</td>
<td>1.4999</td>
<td>-0.0001</td>
</tr>
<tr>
<td>5</td>
<td>1.5000</td>
<td>1.5000</td>
<td>(</td>
</tr>
</tbody>
</table>