3.2 Fundamental Solutions of Linear Homogeneous Equations

We now seek to answer some basic questions regarding 2nd order linear o.d.e.s.

1) When does the o.d.e. have a solution?
2) If we find a solution - are there others?

Begin by introducing the Second Order Differential Operator

\[L[\phi] = \phi'' + p(x)\phi' + q(x)\phi \]

Where \(p \) and \(q \) are continuous on open interval \(I : \alpha < x < \beta \)
and \(\phi \) is twice-differentiable on \(I \).

So, the general Second order linear Initial value problem is

Find \(y \) s.t. \[L[y] = y'' + p(x)y' + q(x)y = g(x) \]
Subject to \(y(\alpha) = y_0, \quad y'(\alpha) = y'_0 \)

\[\text{(1)} \]

Thm 3.2.1

If \(p, q \) and \(g \) are continuous on an open interval \(I \), then there exists exactly one solution \(y = \phi(x) \) of \(\text{(1)} \), and the solution exists throughout \(I \).

Note that the o.d.e. must be in the form of \(\text{(1)} \), with the coefficient of \(y'' \) equal to 1.
Thm 3.2.2 (principle of superposition) (linear combination)

If \(y_1 \) and \(y_2 \) are two solutions of the differential equation

\[
L[y] = y'' + p(x)y' + q(x)y = 0
\]

then the linear combination \(c_1 y_1 + c_2 y_2 \) is also a solution for any values of the constants \(c_1 \) and \(c_2 \).

Proof

\[
L[c_1 y_1 + c_2 y_2] = \frac{d^2}{dx^2} (c_1 y_1 + c_2 y_2) + p(x) \frac{d}{dx} (c_1 y_1 + c_2 y_2) + q(x) (c_1 y_1 + c_2 y_2) = 0
\]

\[
= c_1 y_1'' + c_2 y_2'' + p(x) c_1 y_1' + p(x) c_2 y_2' + q(x) c_1 y_1 + q(x) c_2 y_2 = 0
\]

\[
= c_1 \left(y_1'' + p(x)y_1' + q(x)y_1 \right) + c_2 \left(y_2'' + p(x)y_2' + q(x)y_2 \right) = 0
\]

\[
= c_1 L[y_1] + c_2 L[y_2] = 0
\]

\[
= c_1 (0) + c_2 (0) = 0
\]

This works because \(L \) is a **linear operator**.

So...

Assuming certain things about the d.e., we know

1) that a unique solution will exist, given specific initial conditions.

2) that a linear combination of functions which satisfy the d.e. will also satisfy the d.e.

\[\text{homogeneous}\]
Given suitable I.C. and properties of the diff. eq.
we now consider the question

"Can I find \(C_1 \) and \(C_2 \) such that \(y = C_1 y_1(x_0) + C_2 y_2(x_0) \)
satisfies the initial conditions?"

1. \(y(x_0) = y_0 \), so \(y_0 = C_1 y_1(x_0) + C_2 y_2(x_0) \)
2. \(y'(x_0) = y'_0 \), so \(y'_0 = C_1 y'_1(x_0) + C_2 y'_2(x_0) \)

2 eq. with 2 unknowns

\[y_1(x_0) C_1 + y_2(x_0) C_2 = y_0 \]
\[y'_1(x_0) C_1 + y'_2(x_0) C_2 = y'_0 \]

Using Cramer's rule we find

\[
C_1 = \frac{\begin{vmatrix} y_0 & y_2(x_0) \\ y'_0 & y'_2(x_0) \end{vmatrix}}{\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix}} \\
C_2 = \frac{\begin{vmatrix} y_1(x_0) & y_0 \\ y'_1(x_0) & y'_0 \end{vmatrix}}{\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix}}
\]

Which say that \(C_1 \) and \(C_2 \) do indeed exist
provided the determinant in the denominator is not zero.

\[
W = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix} = y_1(x_0) y'_2(x_0) - y'_1(x_0) y_2(x_0)
\]

This determinant is called the "Wronskian"
Thm 3.2.3 (page 124) (pg 141 7th)

Main Thrust → if $W \neq 0$ at x_0, where the initial conditions are supplied, then c_1 and c_2 can be found for which $y = c_1y_1 + c_2y_2$ satisfies (X) (the d.e. and the i.c.s).

Ex: Recall $y'' - 4y = 0 \quad \Rightarrow \quad y = c_1e^{2x} + c_2e^{-2x}$

$y(0) = 1 \quad \Rightarrow \quad c_1 = \frac{1}{2} \quad , \quad c_2 = \frac{1}{2}$

$y(0) = 0$

have $y_1 = e^{2x} \quad , \quad y_2 = e^{-2x}$

\[
W = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \begin{vmatrix} e^{2x} & e^{-2x} \\ 2e^{2x} & -2e^{-2x} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & -2 \end{vmatrix} = -2 - 2 = -4
\]

$W = \begin{vmatrix} y_1(x) & 0 \\ y'_1(x) & -4 \end{vmatrix} = \frac{1(-2) - 0}{-4} = \frac{1}{2}$ \quad √

$C_1 = \begin{vmatrix} 1 \\ y_1(x) \\ y'_1(x) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 2 & -4 \end{vmatrix} = \frac{1}{2}$ \quad √

→ The solution $y = c_1y_1 + c_2y_2$, is called the general solution since any solution of the d.e. is contained within this family of functions, i.e. a linearly independent set of solutions span the set of all solutions.

→ If $W \neq 0$, y_1 and y_2 form a fundamental set of solutions.
THM 3.2.4

If \(y_1 \) and \(y_2 \) are two solutions of the differential equation
\[L[y] = y'' + p(x)y' + q(x)y = 0, \]
and if there is a point \(x_0 \) where the Wronskian of \(y_1 \) and \(y_2 \) is nonzero, then the family of solutions \(y = c_1 y_1 + c_2 y_2 \)
with arbitrary \(c_1 \) and \(c_2 \) includes every solution of the ODE.

Proof:

Assume \(\phi(x) \) is any function which satisfies the ODE
and initial conditions (\(k \)). Thus \(\phi(x_0) = y_0 \) and
\[\phi'(x_0) = y_0'. \]

Now show that \(\phi(x) \) is contained in \(y = c_1 y_1 + c_2 y_2 \).

Since by Thm 3.2.2, \(y = c_1 y_1 + c_2 y_2 \) is a solution of the ODE.
and since
\[W = y_1(x)y_2'(x) - y_1'(x)y_2(x) \neq 0. \]
we know, by Thm 3.2.3 that there exist \(c_1 \) and \(c_2 \) which allow \(y \)
to solve (\(k \)).

By Thm 3.2.1, if \(\phi(x) \) and \(y = c_1 y_1 + c_2 y_2 \) both solve
(\(k \)) then \(\phi(x) = c_1 y_1 + c_2 y_2 \) since the solution is unique.

Thus \(\phi \) is contained in \(y = c_1 y_1 + c_2 y_2 \).
Please note that while Theorem 3.2.4 says y and y_2 are fundamental solutions, from a basis for all solutions, it is possible that solutions appear not to depend on these functions.

Ex. Recall $y'' - 4y = 0$, $y(0) = 1$, $y'(0) = 0$; had the solution

$$y = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}.$$

Well, $y = C_1\cosh 2x + C_2\sinh 2x$ also satisfies the o.d.e.

$$\cosh u = \frac{e^u + e^{-u}}{2}, \quad \sinh u = \frac{e^u - e^{-u}}{2}.$$

Finding C_1 & C_2, we match i.e., and get

$$y = \cosh 2x$$ is the solution.