3.5 Repeated Roots; Reduction of Order

Consider \(y'' - 2y' + y = 0 \) \(\Rightarrow r^2 - 2r + 1 = 0 \)

\[(r - 1)(r - 1) = 0 \quad \text{so } r = 1 \text{ is a repeated root.} \]

Clearly \(y_1 = e^x \) is a solution. But \(y_2 = e^x \) is the same – i.e. \(y_1 \) and \(y_2 \) do not form a linearly independent set of solutions – the Wronskian of \(y_1 \) and \(y_2 \) is zero.

Let us try another approach: if \(e^x \) is a solution, we already know that \(ce^x \) is also a solution. Perhaps \(\psi(x)e^x \) will also be a solution – we can put it into the o.d.e. and find what \(\psi(x) \) needs to be.

\[
y = \psi(x)e^x \quad y' = \psi'e^x + \psi e^x = (\psi' + \psi)e^x \\
y'' = \psi''e^x + \psi'e^x + \psi e^x + \psi e^x = (\psi'' + 2\psi' + \psi)e^x
\]

So

\[
(\psi'' + 2\psi' + \psi)e^x - 2(\psi' + \psi)e^x + \psi e^x = 0 \\
\psi''e^x + (2\psi' - 2\psi)e^x + (\psi - 2\psi + \psi)e^x = 0 \\
\psi''e^x = 0
\]

\[
\psi'' = 0 \\
\psi' = C_1 \\
\psi = C_1xe^x + C_2
\]

So we find that \(y = (C_1xe^x + C_2)e^x = C_1xe^x + C_2e^x \) is a solution.

Actually, this is our general solution, the fundamental solution set being \(xe^x \) and \(e^x \).
Given \(ay'' + by' + cy = 0 \)

Let \(y = e^{rt} \) so \(ar^2 + br + c = 0 \)

If \(r = \alpha \) is a repeated root then \(y_1 = e^{\alpha t} \) is a solution. Let \(y = V(t)e^{\alpha t} \)

\(y' = Ve^{\alpha t} + \alpha Ve^{\alpha t} \)
\(y'' = V'e^{\alpha t} + 2\alpha Ve^{\alpha t} + \alpha^2 Ve^{\alpha t} \)

\(ay'' + by' + cy = a(V'' + 2\alpha V' + \alpha^2 V)e^{\alpha t} + b(V' + \alpha V)e^{\alpha t} + cVe^{\alpha t} = 0 \)

\(= V''ae^{\alpha t} + V'(2\alpha a + b)e^{\alpha t} + V(a^2 + \alpha b + c)e^{\alpha t} = 0 \)

\(\alpha^2 + \alpha b + c = 0 \) since \(\alpha = \text{a root} \).

If a quadratic eq has repeated roots it must have a horizontal tangent at \(y = 0 \) so \(\frac{d}{dr}(ar^2 + br + c) = 0 \) at \(\alpha \): \(\frac{d}{dr}(ar^2 + br + c) \bigg|_{\alpha} = 2\alpha a + b \bigg|_{\alpha} = 2\alpha a + b = 0 \)

\(\therefore V''ae^{\alpha t} = 0 \). We require \(a \neq 0 \) so \(V'' = 0 \)

\(\Rightarrow V = c_1 t + c_2 \)

\(y = c_1 t + c_2 e^{\alpha t} = c_1 te^{\alpha t} + c_2 e^{\alpha t} \) is also a sol'n.

\(\text{already known} \)
\(\text{new, linearly independent sol'n} \).
3.5

To make sure, \[W = \begin{vmatrix} xe^x & e^x \\ (x+1)e^x & e^x \end{vmatrix} = xe^{2x} - (x+1)e^{2x} = e^{2x} \neq 0 \]

General Rule: If we get repeated roots of the characteristic eq, say \(r = \lambda \), then a fundamental set of solution is \(e^{\lambda x} \) and \(xe^{\lambda x} \).

So, given \(ay'' + by' + cy = 0 \):

1. Solve characteristic eq \(ar^2 + br + c = 0 \) for roots \(r_1 \) and \(r_2 \).

2. Case 1: \(r_1 \neq r_2 \), real
 \[\Rightarrow y = c_1 e^{r_1 x} + c_2 e^{r_2 x} \]

 Case 2: \(r_1 = \lambda + i\mu, \ r_2 = \lambda - i\mu \)
 \[\Rightarrow y = c_1 e^{\lambda x} \cos \mu x + c_2 e^{\lambda x} \sin \mu x \]

 Case 3: \(r_1 = r_2 = r \)
 \[\Rightarrow y = c_1 xe^{rx} + c_2 e^{rx} \]

Notice that both cases 1 and 3 involve exponentials which can go to zero or to infinity. Note that relatively few, if any, sign changes occur in the solution as \(x \to \infty \).

This is in contrast to case 2 which has periodic functions as part of the solution.
3.5

Reduction of Order

If we know one solution of $y'' + py' + qy = 0$
we can find another independent solution using a similar
method - if y_1 is a solution then seek another solution
of the form vy_1.

y_1 satisfies $y'' + py' + qy = 0$

$y_2 = vy_1$
$y_1' = vy_1' + vy_1$
$y_2' = vy_1' + vvy_1' + vy_1''$

Ode becomes

$v''y_1 + 2vy_1' + vy_1'' + p(vy_1 + vy_1') + q(vy_1) = 0$
$v''y_1 + v'(2y_1' + py_1) + v(y_1'' + py_1' + qy_1) = 0$

$v''y_1 + v'(2y_1' + py_1) = 0 \quad (\ast)$

If $w = v'$

$p(x) = 2\frac{y_1'}{y_1} + p(x) \Rightarrow w' + p(x)w = 0$

$\frac{dw}{w} = -p(x)dx$

$\ln w = -\int p(x)dx$

$w = v' = e^{-\int p(x)dx}$

integrate to find $v(x)$

Ex.

$x^2y'' + 2xy' - 2y = 0 \quad x > 0$

$y_1(x) = x$

$y_2(x) = y(x) x$

$p(x) = \frac{2}{x}$
$q(x) = -\frac{2}{x^2}$

$y'_1 = v'x + v$
$y''_1 = v''x + v' + v' = v''x + 2v'$

From (\ast)

$v''x + v'(2 + \frac{2}{x}) = 0 \Rightarrow \dot{x}v'' + 4v' = 0$
\[W' - \frac{4}{x} w = -4 \frac{dx}{w} \]

\[\ln |w| = -4 \ln |x| + C \]

\[W = C x^{-4} \]

\[V = \int C x^{-4} dx = C_1 x^{-3} + C_2 \]

So \[y_2 = x^{-1} x^{-3} = x^{-2} \] is also a solution.

Check:

\[x^{-2} (6x^{-4}) + 2x (-2x^{-3}) - 2x^{-2} = 6x^{-2} - 4x^{-2} - 2x^{-2} = 0 \]

General solution would be \[y = C_1 x + C_2 x^{-2} \]

For discussion #33, 34

Critically Damped Harmonic Oscillator

\[m \ddot{x} + \gamma \dot{x} + kx = 0 \]

\[\gamma \text{ is coefficient of friction, } \gamma > 0 \]

Assume \[x = e^{rt} \Rightarrow mr^2 + \gamma r + k = 0 \Rightarrow r = \frac{-\gamma \pm \sqrt{\gamma^2 - 4km}}{2m} \]

If \(\gamma^2 > 4km \) -> two real distinct roots:

\[x = C_1 e^{\frac{\gamma - \sqrt{\gamma^2 - 4km}}{2m} t} + C_2 e^{\frac{\gamma + \sqrt{\gamma^2 - 4km}}{2m} t} \]

Exponents are both negative so solutions decay exponentially.

If \(\gamma^2 < 4km \) -> complex conjugate roots:

\[r = \frac{-\gamma}{2m} \pm \frac{i \sqrt{4km - \gamma^2}}{2m} \]

\[x = C_1 e^{\frac{\gamma}{2m} t} \cos \omega t + C_2 e^{\frac{\gamma}{2m} t} \sin \omega t \]

Decay since \(\omega > 0 \)

If \(\gamma^2 = 4km = 0 \) -> real repeated roots \[r = -\frac{\gamma}{2m} \]

\[x = C_1 e^{\frac{-\gamma}{2m} t} + C_2 e^{\frac{-\gamma}{2m} t} \]

Decay, no oscillation -

Slowest decay w/o osc. \[\Rightarrow \text{Critically damped} \]