5.1 Review of Power Series

A power series has the form \(\sum_{n=0}^{\infty} a_n (x-x_0)^n \) where \(x_0 \) is a fixed point.

The power series converges at \(x \) if
\[
\lim_{m \to \infty} \sum_{n=0}^{m} a_n (x-x_0)^n
\]
exists.

The power series converges absolutely at \(x \) if the series
\[
\sum_{n=0}^{\infty} |a_n (x-x_0)^n|
\]
converges.

If a power series converges absolutely at \(x \) then it converges at \(x \). The converse is not true in general.

The two most frequently used tests for convergence are the \(n^{th} \) root test and the ratio test.

\(n^{th} \) root test: The series \(\sum_{n=0}^{\infty} a_n (x-x_0)^n \) converges absolutely at \(x \) if
\[
\lim_{n \to \infty} \sqrt[n]{|a_n (x-x_0)^n|} = L < 1
\]
This reduces to
\[
|x-x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1
\]
5.1

Ratio Test: The series \(\sum_{n=0}^{\infty} a_n (x-x_0)^n \) converges absolutely at \(x \) if

\[
\lim_{n \to \infty} \left| \frac{a_{n+1} (x-x_0)^{n+1}}{a_n (x-x_0)^n} \right| = L < 1
\]

or

\[
|x-x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1
\]

(Note: this test only applies if all \(a_n \neq 0 \), \(n > N \) for some \(N \))

In each case \(L \) is a constant. If \(L < 1 \) then we have absolute convergence. If \(L > 1 \) we know that the series diverges. If \(L = 1 \) the test is inconclusive.

For any power series there is a nonnegative number \(\rho \) called the **radius of convergence** such that if

\[
|x-x_0| < \rho
\]

then the series converges absolutely and if

\[
|x-x_0| > \rho
\]

the series diverges. It may either converge or diverge at

\[
|x-x_0| = \rho
\]

Example: Determine the radius of convergence of

\[
a) \sum_{n=0}^{\infty} \frac{n}{2^n} x^n \quad b) \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}
\]
a) \[\sum_{n=0}^{\infty} \frac{n}{2^n} x^n \] We will use the ratio test.

\[\lim_{n \to \infty} \left| \frac{\frac{n+1}{2^{n+1}} x^{n+1}}{\frac{n}{2^n} x^n} \right| = \left| \frac{n+1}{2n} \right| \]

\[= |x| \lim_{n \to \infty} \left| \frac{n+1}{2n} \right| = \frac{1}{2} |x| \lim_{n \to \infty} \left| \frac{n+1}{n} \right| \]

\[= \frac{1}{2} |x| \]

We want this to be less than one, so

\[\frac{1}{2} |x| < 1 \]

\[|x| < 2 \]

\[|x| = 2 \]

The interval of convergence is \(x \in [-2, 2] \) but may also include either endpoint.

Check \(x = -2 \): \[\sum_{n=0}^{\infty} \frac{n}{2^n} (-2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot n \]

Diverges since terms don't go to 0.

Check \(x = +2 \): \[\sum_{n=0}^{\infty} \frac{n}{2^n} (2)^n = \sum_{n=0}^{\infty} n \]

Diverges since terms don't go to 0.

\[\text{Interval of convergence: } -2 < x < 2 \]
b) \[\sum_{n=0}^{\infty} \frac{x^{2n}}{n!} \]

\[\lim_{n \to \infty} \left| \frac{x^{2(n+1)}}{(n+1)!} \frac{n!}{x^{2n}} \right| \]

\[= \lim_{n \to \infty} \left| x^2 \frac{n!}{(n+1)n!} \right| \]

\[= x^2 \lim_{n \to \infty} \left| \frac{1}{n+1} \right| = 0 \]

Since this limit is zero for all \(x \), the radius of convergence is infinite:\[p = \infty \]

Now, assume

\[f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n \]

\[g(x) = \sum_{n=0}^{\infty} b_n (x-x_0)^n \]

(note: \(n \) is a "dummy parameter", much like the variable of integration in a definite integral)

In this case we say the series \(\sum_{n=0}^{\infty} a_n (x-x_0)^n \) converges to \(f(x) \). There may be restrictions on the interval - well, assume \(|x-x_0| < \rho \)

\[\rho > 0 \]

1. \(f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-x_0)^n \)

(Convergent) Series may be added term-by-term.
\[f(x) g(x) = \left[\sum_{n=0}^{\infty} a_n (x-x_0)^n \right] \left[\sum_{n=0}^{\infty} b_n (x-x_0)^n \right] \]

\[= \sum_{n=0}^{\infty} c_n (x-x_0)^n \]

\[c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0 \]

Division is also defined whenever \(g(x) \neq 0 \).

3. If and all its derivatives exist on \(|x-x_0| < \rho \) and
\[a_n = \frac{f^{(n)}(x_0)}{n!} \]

The Taylor series for a function \(f(x) \) is
\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \]

[\(f \) is analytic at \(x_0 \)]

4. If \(\sum a_n (x-x_0)^n = \sum b_n (x-x_0)^n \) for each \(x \)
then \(a_n = b_n \) for \(n=0, 1, 2, \ldots \)
It is often useful to "shift" the index of summation (remember that it's just a dummy parameter).

\[\sum_{n=2}^{\infty} a_n (x-x_0)^n = a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \ldots \]

But...

\[\sum_{n=0}^{\infty} a_{n+2} (x-x_0)^{n+2} = a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \ldots \]

We can always accomplish this by

1. Replacing \(n \) (or whatever the index of summation happens to be) by \(n + a \) where \(a \) is the amount we want to shift by.

VIN: (Very Important Note) always use parentheses around the \(n \) that's replaced.

Ex

Change \(\sum_{n=1}^{\infty} a_n (x-x_0)^{2n} \) so that the index of summation begins at \(0 \).

\[\sum_{n+1=1}^{\infty} a_{n+1} (x-x_0)^{2(n+1)} \]

\[\sum_{n=0}^{\infty} a_{n+1} (x-x_0)^{2n+2} \quad \text{Done.} \]