Homework on Partial Orders

Problem 1. Suppose \(S = \{(x, y) \mid x \leq y\} \) is a relation defined on \(\mathbb{R} \). Show that \(S \) is a partial order on \(\mathbb{R} \).

Problem 2. Let \(X = \{a, b, c\} \) and \(S \) be the partial order defined on the powerset \(P(X) \) defined as \(S = \{(A, B) \mid A \text{ is a subset of } B\} \). List the elements of \(S \).

Problem 3. Draw the Hasse diagram of the partial order \(S \) in the last problem.

Problem 4. Let \(A = \{2, 3, 4, 6, 8, 12, 16, 24\} \) and \(S \) be the partial order relation on \(A \) defined by \(S = \{(a, b) \mid a \text{ divides } b\} \). Find

a. the minimal elements in \(A \),

b. the maximal elements in \(A \), and

c. the upper bounds of the set \(B = \{4, 6, 12\} \).

Problem 5. Explain why the relation \(<\), in which \(a \) and \(b \) are related if \(a < b \), is **not** a partial order.