Equivalence Relations

Consider the following relations on the set of people in this room

- \{(a, b) \mid a \text{ and } b \text{ were born in the same month}\},
- \{(a, b) \mid a \text{ and } b \text{ are the same sex}\},
- \{(a, b) \mid a \text{ and } b \text{ are from the the same state}\}.

Observe that these relations are all reflexive, symmetric and transitive. Because of this they are all equivalent in some way.

A relation on a set \(A \) is an equivalence relation if it is reflexive, symmetric and transitive.

Suppose that \(R \) is a relation on the positive integers such that \((a, b) \in R\) if and only if \(a < 5 \) and \(b < 5 \). Is \(R \) and equivalence relation?

Since \(a = a \) it follows that if \(a < 5 \) then \((a, a) \in R\) so we know that \(R \) is reflexive.

Suppose \((a, b) \in R\) so both \(a < 5 \) and \(b < 5 \). In this case certainly \((b, a) \in R\) so that \(R \) is symmetric.

Finally, if \((a, b) \in R\) and \((b, c) \in R\) then both \(a \) and \(c \) are less than 5 so \((a, c) \in R\) showing that \(R \) is transitive.

Thus \(R \) is an equivalence relation.

Let \(R \) be an equivalence relation on a set \(A \). The set of all elements that are related to an element \(a \) of \(A \) is called the equivalence class of \(a \). This is denoted \([a]\) or just \([a]\) if it is clear what \(R \) is.

- Suppose \(R \) is \{\((a, b) \mid a \text{ and } b \text{ were born in the same month}\)\} and is defined on the set of people in this room. Then
 \[[a] = \{ b \mid b \text{ was born in the same month as } a \}. \]

- Suppose \(A = \{1, 2, 3, 4\} \) and
 \[R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\} \]

 We can list the equivalence class for each element of \(A \):
 \[[1] = \{1, 2\}, \quad [2] = \{1, 2\}, \quad [3] = \{3, 4\}, \quad [4] = \{3, 4\} \]
Equivalence Relations

A **partition** of a set \(S \) is a collection of disjoint, nonempty subsets of \(S \) that have \(S \) as their union.

If \(S = \{1, 2, 3, 4, 5, 6, 7, 8\} \) then one partition of \(S \) is
\[
\{ \{1, 2\}, \{3\}, \{4, 5, 6\}, \{7, 8\} \}
\]

Notice that every element of \(S \) is in exactly one of the subsets.

The equivalence classes of a relation on a set \(A \) form a partition of \(A \).

- The union of all the \([a]\) is equal to \(A \).
- \([a] \cap [b] = \emptyset\) when \([a] \neq [b] \).

Equivalence Relations

Theorem

Let \(R \) be an equivalence relation on \(A \). The following statements are equivalent.

1. \(a \ R \ b \)
2. \([a] = [b] \)
3. \([a] \cap [b] \neq \emptyset \)

We’ll prove this using a standard approach. First we’ll show that statement 1 \(\implies \) statement 2. Next we’ll show that statement 2 \(\implies \) statement 3. Finally we’ll show that statement 3 \(\implies \) statement 1.

Proof: Statement 1 \(\implies \) Statement 2

Assume \(c \in [a] \) so that \(a \ R c \). Because equivalence relations are symmetric we know that \(c \ R a \). Since \(a \ R b \) by the transitive property we can conclude that \(c \ R b \) so that \(c \in [b] \).

This argument shows that \([a] \subseteq [b] \).

We can reverse the argument above to show that \([b] \subseteq [a] \).

Taken together this shows that \(a \ R b \implies [a] = [b] \).

Proof: Statement 2 \(\implies \) Statement 3

Because \([a] = [b] \) we know that \(a \in [a] \) and \(a \in [b] \).

Since we know at least one element common to both sets \([a]\) and \([b]\) we can conclude that \([a] \cap [b] \neq \emptyset \).

This shows that \([a] = [b] \implies [a] \cap [b] \neq \emptyset \).
Equivalence Relations

Proof: Statement 3 \Rightarrow Statement 1

Suppose $c \in [a] \cap [b]$ so that c is in both sets $[a]$ and $[b]$. This means that cRa and cRb.

By the symmetric and transitive properties we can conclude that aRb.

This shows that $[a] \cap [b] \neq \emptyset \Rightarrow aRb$.

The proof is now completed.

Equivalence Relations

Extended Example: Congruence Classes

The integer division algorithm is $p = mq + r$. Here r is the remainder that results when p is divided by m.

The modulo function is a function $m: \mathbb{Z} \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ that returns the remainder when one integer is divided by another. The set \mathbb{Z} is the set of integers, and the set \mathbb{Z}^+ is the set of positive integers.

We say that a is congruent to b modulo m if

$$m \mid (a - b)$$

which means m divides $(a - b)$. Another way to express this is that

$$a \mod m = b \mod m$$

Equivalence Relations

We use the notation

$$a \equiv b \pmod m$$

to indicate that a is congruent to b modulo m.

Example: Think of a clock: in some sense 15 minutes and 75 minutes are the same, since in both cases the minute hand is at the three-o’clock position. In fact 15\equiv75 (mod 60). This is easy to see because 75-15 = 60.

Example: 53\equiv89 (mod 12). To see this observe that 89-53=36 and 12 \mid 36.

Equivalence Relations

Theorem

Let m be a positive integer greater than 1. The relation

$$R = \{(a, b) \mid a \equiv b \pmod m\}$$

is an equivalence relation on the set of integers.

Proof

We need to show that R is reflexive, symmetric and transitive. To see that R is reflexive we need to show that $(a, a) \in R$ for all integers a.

We know that $a \equiv a \pmod m$ if $m \mid (a - a)$. Since $a - a = 0$ and we know that $m \mid 0$ we can conclude that R is reflexive.
Equivalence Relations

Proof (continued)

To see that \(R \) is symmetric we assume that \((a, b) \in R \) so that

\[a - b = km \]

for some integer \(k \). In this case

\[b - a = -km \]

which is also divisible by \(m \), but this means that

\[b \equiv a \pmod{m} \]

so \((b, a) \in R \). Thus \(R \) is symmetric.

\[\text{Example: } \begin{align*}
[2] &= \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\} \\
[0] &= \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\} \\
[1] &= \{\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots\} \\
[2] &= \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\}
\end{align*} \]

Equivalence Relations

Proof (continued)

Finally, we need to show that \(R \) is transitive. Assume that \((a, b) \in R \) and \((b, c) \in R \). This means that

\[a \equiv b \pmod{m} \quad \text{which means that } \ a - b = km \text{ for some integer } k \]

\[b \equiv c \pmod{m} \quad \text{which means that } \ b - c = jm \text{ for some integer } j \]

Adding the equations on the right gives

\[(a - b) + (b - c) = km + jm \]

\[a - c = (k + j)m \]

In the second form we see that \(a - c \) is a multiple of \(m \) so that \(a \) is

congruent to \(c \) modulo \(m \). This means that \((a, c) \in R \), and so \(R \) is

transitive.

Equivalence Relations

Since the congruence modulo \(m \) relation is an equivalence relation it must partition the set of integers. Consider all the numbers that satisfy

\[a \equiv 1 \pmod{3} \]

Any integer which has a remainder of 1 when divided by 3 will satisfy this expression; examples are numbers like 4 and 7.

We denote the \textbf{congruence class of} \(a \) \textbf{modulo} \(m \) with \([a]_m\).

Example:

\[[0]_3 = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\} \]

\[[1]_3 = \{\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots\} \]

\[[2]_3 = \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\} \]