Let A and B be sets. A **binary relation from A to B** is a subset of $A \times B$.

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then the following are all relations from A to B.

1. $R = \{(1,a), (2,a), (3,b)\}$
2. $S = \{(1,a), (1,b), (2,a)\}$
3. $T = \{(3,a)\}$
4. $U = \{(2,a), (2,b)\}$

Mathematically, if we want to say that a is related to b in some relation R then we write

$$a \mathrel{R} b$$

A **relation on the set A** is a relation from A to A.

Consider the relation $R = \{(a,b) \mid a \text{ divides } b\}$ on the set $A = \{1,2,3,4,5,6\}$. R consists of ordered pairs in which the first number divides evenly into the second number.

1. List R *(answer)*
2. Display R graphically *(answer)*
3. Display R in tabular form *(answer)*
A relation R on A is **reflexive** if $(a,a)\in R$ for every $a\in A$.

A relation R on A is **symmetric** if $(b,a)\in R$ whenever $(a,b)\in R$ for every $a,b\in A$.

A relation R on A is **antisymmetric** if $(a,b)\in R$ and $(b,a)\in R$ only if $a=b$ for every $a,b\in A$.

A relation R on A is **transitive** if whenever $(a,b)\in R$ and $(b,c)\in R$ then $(a,c)\in R$ for every $a,b,c\in A$.

Since relations are sets, we can combine relations using set operators.

Given two relations Q and R from A to B, each of the following operations results in a new relation from A to B:

$$Q\cap R, \quad Q\cup R, \quad Q-R, \quad R-Q$$

Let R be a relation from A to B and S be a relation from B to C. The **composite** of R and S is the relation consisting of all elements (a,c) where

$$a\in A, b\in B, (a,b)\in R$$
$$b\in B, c\in C, (b,c)\in S$$
$$a\in A, c\in C, (a,c)\in R\circ S$$

Consider the following relations on $\{1,2,3,4\}$. Determine which ones are reflexive, symmetric, antisymmetric or transitive.

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

$$R_2 = \{(1,1), (1,2), (2,1)\}$$

$$R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

$$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

$$R_6 = \{(3,4)\}$$

As already seen, we can represent relations several different ways. Consider the relation

$$R = \{(1,1), (1,2), (2,3), (3,3)\}$$

defined on the set $A = \{1, 2, 3, 4\}$

We can construct a table representing this relation. Unlike previous examples, however, now we’ll use zeros and ones to fill the table: a one indicates membership in the relation.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
It’s a small step from the table to a matrix. We’ll call the matrix M_R, the matrix representing the relation R.

$$M_R = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The ij entry of the M_R matrix is given by

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

Note

- The sets A and B must be in some particular, but arbitrary, order.
- Matrix rows are associated with elements in A and columns are associated with elements in B.
- The matrix responding to a relation on a single set A is square.

If $A=\{1,2,3,4\}$ and $B=\{2,4\}$, write the relation that has the matrix $M = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$.

What can be said about the matrix for a relation if the relation is

- reflexive (answer)
- symmetric (answer)
- antisymmetric (answer)

A directed graph or digraph, consists of a set V of vertices (nodes) and a set E of edges (arcs) that point from a particular vertex to a particular vertex.

Let $A = \{a, b, c, d\}$ and let $R = \{(a,a), (a,b), (a,d), (b,d), (c,a), (c,c), (d,d)\}$. Draw the corresponding directed graph.

There is exactly 1 edge for each ordered pair, and the direction of the edge is determined by the order of the pair.
Relations

Digraphs give immediate visual indication of the properties of relations.

Reflexive
- Each vertex as an edge looping back to itself

Symmetric
- If an edge exists from one vertex to another, then another edge exists from the second vertex back to the first.

Antisymmetric
- There are no "symmetric" conditions.

Transitive
- If an edge exists from vertex a to vertex b and another edge from vertex b to vertex c then an edge exists from vertex a to vertex c.