2.3 Characterization of Invertible Matrices

Thm 8 Let A be a square $n \times n$ matrix. The following statements are equivalent:

a) A is an invertible matrix
b) A is row equivalent to I
c) A has n pivot positions
d) The equation $AX = 0$ has only the trivial solution
e) The columns of A form a linearly independent set
f) The linear transformation $x \mapsto Ax$ is one-to-one.
g) The equation $AX = I$ has at least one solution for each $b \in \mathbb{R}^n$

[I can also be stated as "$AX = b$ has a unique solution for each $b \in \mathbb{R}^n$."

h) The columns of A span \mathbb{R}^n
i) The linear transformation $x \mapsto AX$ maps \mathbb{R}^n onto \mathbb{R}^n
j) A is an $n \times n$ matrix C s.t. $CA = I$
k) A is an $n \times n$ matrix D s.t. $AD = I$
l) A^T is an invertible matrix.

The set of $n \times n$ matrices is partitioned into two disjoint sets:

invertible (nonsingular) non-invertible (singular)
A linear transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is invertible if there exists \(S : \mathbb{R}^n \rightarrow \mathbb{R}^n \) such that:

\[
S(T(x)) = x \quad \forall x \in \mathbb{R}^n \\
T(S(x)) = x \quad \forall x \in \mathbb{R}^n
\]

Thm 9

Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a linear transformation and let \(A \) be the standard matrix of that transformation. Then \(T \) is invertible iff \(A \) is an invertible matrix.

Ex 11. a) \(T \) d=6 b) \(T \) h=|c| c) \(T \) d d) \(T \) c)

Ex 13. \[
\begin{pmatrix}
a & x & x_1 \\
o & b & x_2 \\
o & o & c
\end{pmatrix}
\]

If \(a, b, c \neq 0 \) we can row reduce this to \(I_3 \).

What if \(a, b \) or \(c = 0 \)?

- \(a = 0 \) \(\Rightarrow \) column of zeros, cannot row reduce to \(I_3 \)
- \(b = 0 \) \(\Rightarrow \) only 2 pivot columns
- \(c = 0 \) \(\Rightarrow \) ditto

A triangular \(n \times n \) matrix is invertible iff each of its diagonal entries is nonzero.