4.4 Coordinate Systems

Theorem Let $\mathbf{B} = \{ \mathbf{b}_1, \ldots, \mathbf{b}_n \}$ be a basis for a vector space V. Then for each \mathbf{x} in V there exists a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_n \mathbf{b}_n.$$

Proof. Suppose, in addition to the above, that

$$\mathbf{x} = d_1 \mathbf{b}_1 + \cdots + d_n \mathbf{b}_n \text{ (i.e. another expansion exists). But then}$$

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1) \mathbf{b}_1 + (c_2 - d_2) \mathbf{b}_2 + \cdots + (c_n - d_n) \mathbf{b}_n$$

which can only be true if $c_i - d_i = 0$, $i = 1, \ldots, n$

Since the \mathbf{b}_i are linearly independent (why are they?)

Thus $c_i = d_i$ so the expansion is unique.

These c_i are the coordinates of \mathbf{x} relative to the basis \mathbf{B}.

Example

The vector $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ can be expressed using the basis $\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ as $3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Thus the coordinates are 3 and 4.

Example

Express $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ using the basis $\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$

$$c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \implies \begin{bmatrix} 1 \\ 1 \end{bmatrix} c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
We find that $c_1 = 2$, $c_2 = 1$. So

$$\begin{bmatrix} \frac{3}{4} \end{bmatrix} = 2 \begin{bmatrix} 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \end{bmatrix}$$

and 2,1 are the coordinates relative to the basis $\{[1], [2]\}$.

Key: While any of a number of bases can be chosen, once one is chosen, every vector has a unique set of coordinates relative to that basis.

Also - some bases are more "natural" than others.

Text uses notation $[\vec{x}]_B$ to be the coordinate vector of \vec{x} relative to the basis B. So if $B = \{[1], [2]\}$ then $\begin{bmatrix} \frac{3}{4} \end{bmatrix}$

is \vec{x} relative to standard basis for \mathbb{R}^2.

Notice that

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

2nd basis vector relative to standard basis.
If we have \(B = \{ \vec{b}_1, \ldots, \vec{b}_n \} \), then the matrix

\[
P_B = [\vec{b}_1 \ldots \vec{b}_n]
\]

is called the change-of-coordinates matrix.

\[
\tilde{x} = P_B^{-1} \tilde{x}_B
\]

\(P_B \) is invertible since it is square and has linearly independent columns, so

\[
[\tilde{x}]_B = P_B^{-1} \tilde{x}
\]

Coordinate mapping is one-to-one and onto.

Ex \(B = \{ 1, t+1, t^2-t \} \) is a basis for \(\mathbb{P}_2 \).

Find the coordinate vector of \(\vec{p}(t) = a + bt + ct^2 \) relative to \(B \).

\[
a + bt + ct^2 = \alpha_1(1) + \alpha_2(t+1) + \alpha_3(t^2-t)
\]

\[
= (\alpha_1 + \alpha_2) + (\alpha_2 - \alpha_3)t + \alpha_3 t^2
\]

So \(c = \alpha_3 \)

\(b = \alpha_2 - \alpha_3 = \alpha_1 - c \Rightarrow \alpha_2 = b+c \)

\(a = \alpha_1 + \alpha_2 = \alpha_1 + (b+c) \Rightarrow \alpha_1 = a - (b+c) = a - b - c \)

So \([\tilde{x}]_B = \begin{bmatrix} a - b - c \\ b+c \\ c \end{bmatrix} \)
4.4

Ex. Even simpler, \(B = \{ 1, t, t^2 \} \). Then
\[a + b t + c t^2 \]
has
\[[\tilde{x}]_B = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \]

In both of these cases, we have gone from the vector space \(P_2 \) to the space \(\mathbb{R}^3 \).

Thm. Let \(B = \{ \tilde{b}_1, \ldots, \tilde{b}_n \} \) be an ordered basis for a vector space \(V \). Then the coordinate mapping \(\tilde{x} \mapsto [\tilde{x}]_B \) is a one-to-one linear transformation from \(V \) onto \(\mathbb{R}^n \).

This means that the transformation \(\tilde{x} \mapsto [\tilde{x}]_B \) is an isomorphism from \(V \) to \(\mathbb{R}^n \).

Two vector spaces, that are related by an isomorphism, while possibly very different in representation and appearance, require exactly the same amount of information to specify vectors within them, and operations performed on elements in one space have matching operations which can be performed on elements in the other space.

Key here: one-to-one and onto.

Ex: Show \(P_3 \) isomorphic to \(\mathbb{R}^4 \).