
CPS122 Lecture: Encapsulation, Inheritance, and Polymorphism

Last revised February 13, 2013
Objectives:

1. To review the basic concept of inheritance
2. To introduce Polymorphism.
3. To introduce the notions of abstract methods, abstract classes, and interfaces.
4. To introduce issues that arise with subclasses - protected visibility, use of the

super() constructor
5. To discuss the notion of multiple inheritance and Java’s approach to it

 Materials:

1. Demo and handout of BankAccount hierarchy
2. Dr. Java for demos + file OverrideDemo.java
3. Employees demo program - Handout and online demo, projectable versions of

code snippets
4. Projectable of stages in development of Employee hierarchy

I. Introduction

A. Throughout this course, we have been talking about a particular kind
of computer programming - object-oriented programming (or OO).
As an approach to programming, OO is characterized by three key
features (sometimes called the “OO Pie”).

1. Polymorphism

2. Inheritance

3. Encapsulation

(We’ll actually talk about these in reverse order!)

1

B. Although we have not used the term per se, we have already made use
of encapsulation.

1. In OO systems, the class is the basic unit of encapsulation. A class
encapsulates data about an object with methods for manipulating
the data, while controlling access to the data and methods from
outside the class so as to ensure consistent behavior.

2. This is really what the visibility modifier “private” is all about.
When we declare something in a class to be private, we are saying
that it can only be accessed by methods defined in that class - that
is, it is encapsulated by the class and is not accessible from outside
without going through the methods that are defined in the class.

C. In this series of lectures,we will focus on inheritance and
polymorphism.

II. Inheritance

A. One of the main uses of inheritance is to model hierarchical structures
that exist in the world.

Example: Consider people at Gordon college. Broadly speaking, they
fall into two categories: employees and students.

1. There are some features that both employees and students have in
common - whether a person is an employee or a student, he or she
has a name, address, date of birth, etc.

2. There are also some features that are unique to each kind of person
- e.g. an employee has a pay rate, but a student does not; a student
has a gpa, but an employee does not, etc.

2

3. We can represent this hierarchical structure this way:

Person

Employee Student

B. In Java, inheritance is specified by the reserved word extends. For
example, we could declare classes Person, Employee, and Student as
follows:

class Person {
	 ...
}

class Employee extends Person {
	 ...
}

class Student extends Person {
	 ...
}

1. With this structure, the classes Employee and Student inherit all
the features of the class Person.

2. In addition, each of the classes Employee and Student can have
features of its own not shared with the other classes.

C. Basic terminology: If a class B inherits from a class A:

3

1. We say that B extends A or B is a subclass of A - So we say
Employee extends Person, or Employee is a subclass of Person.

The term subclass comes from the mathematical notion of subset -
the set of all Employees is a subset of the set of all Persons.

2. We say that A is the base class of B or the superclass of B - So we say
Person is the base class of Employee, or the superclass of Employee.

The term superclass comes from the mathematical notion of sets as well -
the set of a Persons is a superset of the set of all Persons.

3. This notion can be extended to multiple levels - e.g. if C extends B
and B extends A, then we can say not only that C is a subclass of
B, but also that it is a subclass of A. In this case, we sometimes
distinguish between direct subclasses/base class and indirect
subclasses/base class.

Example: suppose we had the following hierarchy

Person

Employee Student

Faculty Staff

Now we could say that Faculty is direct subclass of Employee, and
an indirect subclass of Person, etc.

4

D. Crucial to inheritance is what is sometimes called the law of
substitution:

1. If a class B inherits from (extends) a class A, then an object of
class B must be able to be used anywhere an object of class A is
expected - i.e. you can always substitute a B for an A.

Thus, in the above example, the inheritance structure says that an
Employee can always be used anywhere that a Person is needed.

2. This notion is what allows us to call B a subclass of A or A a
superclass of B. The set of all “B” objects is a subset of the set of
all “A” objects - which potentially includes other “A” objects that
are not “B” objects - e.g.

The meaning of “B extends A”

The set of all A objects

The set of all B objects

3. This relationship is sometimes expressed by using the phrase “is a”
- we say a B “is a” A.

4. Remembering the law of substitution will help prevent some
common mistakes that arise from misusing inheritance.

5

a) The “is a” relationship is similar to another relationship called
the containment relationship, or “has a”. Sometimes
inheritance is incorrectly used where containment should be
used instead.

b) Example: suppose we were building a software model of the
human body, and we wanted to create a class Person to model a
whole person, and a class Arm to model a person’s arms. The
correct relationship between Arm and Person is a “has a”
relationship - a Person “has a” Arm (actually two of them), not
“is a” - we cannot say that an Arm is a Person, because we
cannot substitute an Arm everywhere a Person is needed.

5. As used in the OO world, inheritance can also be used for
specialization - e.g. in a graphics system we may have a class
Square that is a subclass of the class Rectangle - meaning that
Square is a specialization of Rectangle, being a Rectangle with
equal sides. This is consistent with the law of substitution -
anywhere a rectangle is needed, a square can be used.

Of course, this is a different concept from the way we speak of
inheritance in terms of human relationships. For example, I
inherited my mother’s hair color - but that does mean that I’m a
specialization of my mother!

E. A key aspect of inheritance is that a subclass ordinarily inherits all the
features of its base class. For example, consider the following
example of a class hierarchy for bank accounts (similar to the example
we looked at earlier, but modified to incorporate two different kinds of
bank account- checking and savings - with a common base class, and
with some other changes as well.)

6

BankAccount

SavingsAccount CheckingAccount

A Java implementation this hierarchy might look like the following:

HANDOUT

Observe the following:

1. The classes SavingsAccount and CheckingAccount inherit the
features of BankAccount

a) Since a BankAccount has an owner and a balance, so does a
SavingsAccount or a CheckingAccount.

b) Since a BankAccount has methods deposit(), reportBalance(),
and getAccountNumber(), so does a SavingsAccount or a
CheckingAccount.

2. The constructors for SavingsAccount and CheckingAccount must
invoke the constructor for BankAccount “passing up” the owner.
This is done via super(owner) at the start of each.

3. Savings account adds features that an ordinary BankAccount does
not have - e.g. payInterest() and setInterestRate().

4. CheckingAccount overrides the withdraw() method of
BankAccount.

7

a) In the special case where the checking account balance is
insufficient for the withdrawal, but the customer has a savings
account with enough money in it, the withdrawal is made from
savings instead.

b) In all other cases, the inherited behavior is used by invoking
super.withdraw(amount).

5. Certain features of BankAccount are declared protected (rather
than private). This specifies that the subclasses may access them,
though other classes may not.

a) Note how the payInterest() method of SavingsAccount needs to
make use of the inherited feature current balance, and the
withdraw() override in CheckingAccount0 needs to make use of
both the inherited features currentBalance and owner.

b) On the other hand, accountNumber remains private in
BankAccount, which precludes the subclasses from using it.

F. In designing a class hierarchy, methods should be placed at the
appropriate level. For example, in the BankAccountExample:

1. deposit(), reportBalance(), and getAccountNumber() are defined in
the base class BankAccount, and so are inherited by the two
subclasses.

If they were defined in the subclasses, we would have to repeat the
code twice - extra work and an invitation to inconsistency should
we need to make modifications.

2. On the other hand, payInterest() and setInterestRate() are defined
in SavingsAccount, because they are not relevant for
CheckingAccounts.

8

3. Withdraw() is defined in BankAccount and overridden in
CheckingAccount. Why is this better than simply defining
separate versions in CheckingAccount and SavingsAcccount?

ASK

Although CheckingAccount does override the inherited method, it
does make use of it in most cases via the super.withdraw() call.
This would not be possible if separate versions were defined in
CheckingAccount and SavingsAccount, with no base version in
BankAccount.

III.Polymorphism

A. The above example also illustrates polymorphism, which we now
want to define more formally. In brief, because of the law of
substitution, it is possible for a variable that is declared to refer to an
object of a base class to actually refer at run time to an object of that
class or any of its subclasses.

B. Example: Continuing with our BankAccount example

1. suppose we declared a variable as follows:

BankAccount account;

2. We could now make it refer to either a CheckingAccount or a
SavingsAccount - i.e. (assuming a Customer variable named
aardvark exists) either of the following would be legitimate:

account = new CheckingAccount(aardvark);
	

 or
account = new SavingsAccount(aardvark);

9

3. If, however, we tried to perform

account.withdraw(some amount);

with an amount that exceeds the balance, the way it would handle
the operation would depend on its actual type

a) If it were actually a SavingsAccount, it would reject the
operation in all cases

b) If it were actually a CheckingAccount, it would see if its owner
had a savings account with sufficient balance.

C. Another example: Given the following declarations (DEMO with Dr.
Java - file OverrideDemos.java)
class A
{
	 public void saySomething(int i)
	 { System.out.println(i); }
}

class B extends A
{
	 public void saySomething(int i)
	 { System.out.println(4); }
}

1. Load OverrideDemo.java, compile, then type the following at the
interactions window)

A someA;
B someB;

all of the following are legal
someA = new A();
someA = new B();
someB = new B();
someA = someB;

10

However, the following is not legal:
someB = new A();	 // Illegal!

2. Further, when a message is sent to an object, the method used to
handle the message depends on the actual type of the object, not its
declared type. Let’s look at what this distinction means

a) Suppose that we did the assignment
someA = new A();

And now performed the the test

someA instanceof B

the instanceof test would fail (An A is not necessarily a B,
though the reverse is true) and no output would be printed.

DEMO

b) However, if we did the assignment

someA = new B();

and then performed the same test, the test would succeed
because instanceof looks at the actual class of the object
referred to, which may be the declared class or one of its
subclasses.

DEMO

c) By the way - in both cases the test

if (someA instance of A)

would succeed, because a B is an A.

DEMO

11

d) likewise, if we did

someB = new B();

someB instanceof A would succeed since a B is an A.

DEMO

3. We saw earlier that a consequence of this is that a class can
override a method of its base class, and the method that is used
depends on the actual type of the receiver of a message.

Example
someA = new B();
someA.saySomething(-1);

What will the output be?

ASK

42 - since someA actually belongs to class B, the class B version of
saySomething() is the one that is used.

4. Recall that, when a class has a method with the same name and
signature as an inherited method in its base class, we say that the
inherited method is overridden.

The fact that the overridden method may be used in place of the
base class method depending on the actual type of the object is
called dynamic binding or dynamic method invocation. E.g., in
the previous example the declared type of someA was A, but the
actual type was B, so when the saySomething() method was called,
the B version was used.

(BTW: Not all programming languages handle this the same way.
For example, in C++ dynamic binding is only used if you
explicitly ask for it)

12

5. Overridden methods must have the same signature as the inherited
method they override - otherwise we have an overload, not an
override.

EXAMPLE: Suppose, in the above, I instead defined subclass C
with a method called saySomething(short i), instead of the
method whose parameter is of type int..

class C extends A
{
	 public void saySomething(short i)
	 { System.out.println(42); }
}

What I actually have in this case is an overload rather than an
override,

a) Now suppose I write
new C().saySomething(-1);

What will the output be?

ASK

-1

DEMO

b) However, I would get the other method method (hence output
of 42) if I used new C().saySomething((short) -1)

DEMO

6. As we have already seen, when a base class method is overridden
in a subclass, the base class method becomes invisible unless we
use a special syntax to call it:

super.<methodname> (<parameters>)

13

EXAMPLE: Suppose I include a method in B like the following:

	 public void speak()
	 { saySomething(0); }

Then issued the command
new B().speak();

what will the output be?

ASK

42 - Since we use the B version of saySomething(). To get the A
version, I could code the body of the method as
super.saySomething(0);

DEMO

IV.Abstract Methods, Abstract Classes, and Interfaces

A. Returning again to our BankAccount example, would it be meaningful
- in this case - to have a BankAccount object that is neither a
CheckingAccount nor a SavingsAccount?

ASK

1. In a case like this, we can declare the base class BankAccount to
be abstract. (Note in code). An abstract class cannot have an
object that belongs to it, but not to one of its subclasses, which is
what we desire in this case.

2. It is not, however, always the case that a base class should be
abstract. Suppose our bank created a new kind of savings account
called a HighBalanceSavingsAccount which has a minimum
balance of $10,000 but pays a higher interest rate. We might
picture this as follows:

14

BankAccount

SavingsAccount CheckingAccount

HighBalance
SavingsAccount

In this case, though BankAccount would be an abstract class,
SavingsAccount would not - it is meaningful to have a
SavingsAccount that is not a HighBalanceSavingsAccount.

B. There are other issues involved in creating an abstract class as well.

For example: Suppose we were developing a payroll system for a
company where all the employees are paid based on the number of
hours worked each week.

1. We might develop an Employee class like the following:

PROJECT

15

public class Employee
{
 public Employee(String name, String ssn, double hourlyRate)
 {
 ...
 this.hourlyRate = hourlyRate;
 }
 public String getName()
 ...
 public String getSSN()
 ...
 public double weeklyPay()
 {
 // Pop up a dialog box asking for hours worked this week
 return hoursWorked * hourlyRate;
 // Actually should reflect possible overtime in above!
 }
 ...
 private String name;
 private String ssn;
 private double hourlyRate;
}

Now suppose we add a few employees who are paid a fixed salary.

a) We could create a new class SalariedEmployee that overrides
the weeklyPay() method, as follows: (PROJECT)

class SalariedEmployee extends Employee
{
 public SalariedEmployee(String name,String ssn,double
annualSalary)
 ...
 public double weeklyPay()
 { return annualSalary / 52; }
 ...
 private double annualSalary;
}

b) It would now be possible to create an array of Employee objects,
some of whom would actually be SalariedEmployees - e.g.
(PROJECT)

16

Employee [] employees = new Employee[10];
employees[0]=new SalariedEmployee(“Big Boss”,“999-99-9999”,100000.00);
employees[1]=new Employee(“Lowly Peon”, “111-11-1111”, 4.75);
...

c) Further, we could iterate through the array and call the weeklyPay()
method of each, without regard to which type of employee each
represents, and the correct version would be called: (PROJECT)

for (int i = 0; i < employees.length; i ++)
	 printCheck(employees[i].getName, employees[i].weeklyPay());

Note that, in each case, the appropriate version of weeklyPay() is
called - e.g. for Big Boss, the SalariedEmployee version is called and
a check for 1923.08 is printed; for Lowly Peon a dialog is popped up
asking for hours worked and the appropriate amount is calculated
based on a rate of 4.75 per hour. This is another example of
polymorphism.

2. But this is not a good solution. Why?

ASK

Because SalariedEmployee inherits from Employee, every
SalariedEmployee has an hourly rate field, even though it is not
used. (The hourlyRate field is private, so it is not inherited in the
sense that it is not accessible from within class SalariedEmployee;
however, it does exist in the object and is initialized by the
constructor - so a value must be supplied to the constructor even
though it is not needed!)

This can be seen from the following UML Class diagram:

17

	

 	

 	

- annualSalary : double

Employee

SalariedEmployee

- name
- ssn
- hourlyRate : double
+Employee(String,
 String, double)
+ getName() : String
+ getSSN(): String
+ weeklyPay(): double

+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

PROJECT

(1)Each box stands for a class. The arrow with a triangle at the
head connecting them indicates that the class
SalariedEmployee extends Employee - i.e. a
SalariedEmployee “isa” Employee.

(2)Each box has three compartments. The first contains the
name of the class (and potentially certain other information
about the class as we shall see later). The second contains
the fields of the class (the instance and class variables). The
third contains the methods.

(3)Each field and method is preceded by a visibility specifier.
The possible specifiers are:

18

(a) + - accessible to any object - this corresponds to Java
public

(b) - - accessible only to objects of this class - this
corresponds to Java private

(c) # - accessible only to objects of this class or its
subclasses - which corresponds to Java protected. Note
that, in this example, name and ssn are not made
protected - the subclass has access to them through public
methods getName() and getSSN().

(4)Each field has a type specifier, and each method has a return
type specifier.

(5)Each method has type specifiers for its parameters (its
signature).
A subclass includes all the fields of its superclass (though
they may not be accessible in the subclass if they are
declared private). Thus, a SalariedEmployee object has four
fields - name, ssn, and hourly rate (inherited from
Employee) and annualSalary (defined in the class)

b) In this case, each object that belongs to SalariedEmployee has
an hourlyRate field, which is not meaningful.

c) What would be a better solution?

ASK

Create a class hierarchy consisting of a base class called
Employee and two subclasses - one called HourlyEmployee and
one called SalariedEmployee. Only HourlyEmployees would
have an hourlyRate field, while SalariedEmployees would have
an annualSalary field. This is expressed by the following
diagram:

	

	

19

- hourlyRate: double

SalariedEmployeeHourlyEmployee

+ HourlyEmployee
 (String,String,double)
+ weeklyPay(): double

Employee

- name
- ssn

+Employee(String,
 String)
+ getName() : String
+ getSSN(): String

- annualSalary: double

+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

PROJECT

Notice that what we have done is to leave in the base class only
those fields and methods which are common to the two
subclasses. We have also eliminated the need for an hourly rate
parameter in the Employee constructor - we only specify the
name and ssn. We likewise have eliminated the weeklyPay()
method, since this is different for each subclass, and each
implementation uses a field specific to that subclass.

d) However, this solution introduces a new problem. The
following code, which we used above, would no longer work:
(PROJECT AGAIN)

Employee [] employees = new Employee[10];
...
for (int i = 0; i < employees.length; i ++)
 printCheck(employees[i].getName, employees[i].weeklyPay());

20

Why?

ASK

There is no method called weeklyPay() declared in class
Employee, though there is such a method in its subclasses.
Since the array employees is declared to be of class Employee,
the code
employees[i].weeklyPay()

will not compile. (The compiler is not aware of a class’s
subclasses when it compiles code referring to it - and, in
general, cannot be aware of its subclasses since new ones can
be added at any time.)

e) How might we solve this problem? Note that the type of the
array has to be Employee, since individual elements can be of
either of the subclasses.

ASK

We could solve this problem by adding a weeklyPay() method
to the Employee class. But what should its definition be? As it
turns out, it doesn’t matter, since we know that it will be
overridden in the subclasses. So we could use a dummy
implementation like: (PROJECT)

! public double weeklyPay()
! { return 0; }

However, there are all kinds of problems with this - it is
confusing to the reader, and if we accidentally did create an
object directly of class Employee (which we would be allowed
to do), we would get in trouble with the minimum wage laws!

3. To cope with cases like this, Java allows the use of abstract
methods.

21

a) An abstract method uses the modifier abstract as part of the
declaration, and has no implementation - the prototype is
followed by a semicolon instead. It serves to declare that a
given method will be implemented in every subclass of the
class in which it is declared.

Example: We could declare an abstract version of weeklyPay in
class Employee as:
public abstract double weeklyPay();

b) A class that contains one or more abstract methods must itself
be declared as an abstract class. (The compiler enforces this):

(1)Example: (PROJECT)

public abstract class Employee
{
! ...

(2)An abstract class cannot be instantiated - e.g. the following
would now be flagged as an error by the compiler

new Employee(...)

This is because an abstract class is incomplete - it has
methods that have no implementation, so allowing the
creation of an object that is an instance of an abstract class
could lead to an attempt to invoke a method that cannot be
invoked.

(3)A class that contains abstract methods must be declared as
abstract. The reverse is not necessarily true - a class can be
declared as abstract without having any abstract methods.
(This is done if it doesn’t make sense to create a direct
instance of the class.)

22

c) Note that, in general, an abstract class can contain a mixture of
ordinary, fully-defined methods and abstract methods.

EXAMPLE: The Employee class we have used for examples
might contain methods like getName(), getSSN(), etc. which
are common to all kinds of Employees - saving the need to
define each twice, once for HourlyEmployee and once for
Salaried Employee.

d) Note that a subclass of an abstract class must either:

(1)Provide definitions for all of the abstract methods of its base
class.

or

(2) Itself be declared as abstract, too.

e) Sometimes, a non-abstract class is called a concrete class.

4. Distribute, go over, handout of Employee class hierarchy.

a) Abstract class - Employee - and method weeklyPay()

b) final methods - getName(), getSSN() in Employee

c) Call to super() constructor in constructors for HourlyEmployee
and SalariedEmployee

d) Overrides of toString() in HourlyEmployee and
SalariedEmployee, with explicit use of superclass version in
implementation

e) Polymorphic calls to weeklyPay()

f) Demo: run class EmployeeTester.

23

C. Suppose we take the notion of an abstract class and push it to its limit
- i.e. to the point where all of the methods are abstract - none are
defined in the class itself. Such a class would specify a set of
behaviors, without at all defining how they are to be carried out.

1. In Java, such an entity is called an interface, rather than a class.

a) Its declaration begins

[public] interface Name ...

An interface is always abstract; the use of the word abstract in
the interface declaration is legal, but discouraged.

b) An interface can extend any number of other interfaces, but
cannot extend a class.

c) All of the methods of an interface are implicitly abstract and public;
none can have an implementation. The explicit use of the modifiers
abstract and/or public in declaring the methods is optional, but
discouraged

EXAMPLE: Inside the declaration of an interface, the following are
equivalent

public abstract void foo();// Discouraged style
public void foo();! ! // Discouraged style
abstract void foo();! ! // Discouraged style
void foo();

And the following is illegal:

void foo()
{ anything }

24

d) Interfaces can also declare static constants. Any variable
declared in an interface is implicitly public, static, and final, and
must be initialized at the point of declaration. The explicit use
of the modifiers public, static, and/or final in declaring a
constant is legal, but discouraged.

e) Interfaces cannot have:

(1)Constructors

(2) Instance variables

(3)Non-final class variables

(4)Class (static) methods

2. A Java class can implement any number of interfaces by including
the clause

implements Interface [, Interface]...

in its declaration.

A class that declares that it implements an interface must declare
and implement each of the methods specified by the interface - or
must be declared as abstract - in which case its concrete subclasses
must implement any omitted method(s).

3. Why does Java have interfaces as a separate and distinct kind of
entity from classes?

a) An interfaces is used when one wants to specify that a class
inherits a set of potential behaviors, without inheriting their
implementation.

25

b) Interfaces provide a way of dealing with the restriction that a
class can extend at most one other class. A class is allowed to
extend one class and implement any number of interfaces.

V. Miscellaneous Issues

A. The final modifier on methods

1. When a class is going to be extended, it may be that some of its
methods should not be subject to being overridden. In this case,
they can be declared as final.

EXAMPLE: If the class Employee has a getName() method for
accessing the employee’s name that cannot meaningfully be
overridden, the method could be declared as

public final String getName()
{
 return name;
}

2. Declaring a method as final when it cannot be overridden allows
the compiler to perform some optimizations that may result in
more efficient code, so adding final to a method declaration where
appropriate is worthwhile.

B. The Final Modifier on classes

1. Just as an individual method can be declared final, so an entire
class can be declared final. (E.g. public final class ...).

2. A final class cannot be extended. This serves to prevent unwanted
extensions to a class - e.g. the class java.lang.System is final.

26

C. Multiple inheritance.

1. We have talked about a lot of things that Java can do. We now
must consider one capability present in many OO languages that
Java does not support: multiple inheritance.

2. Sometimes, it makes sense for a single class to generalize two (or
more) bases classes. We call such a situation multiple
inheritance.

a) The following example is given by Meyer:

CompanyPlane

Airplane Asset

(1)An airplane that is owned by a corporation (a company
plane) is, at the same time, both an airplane and a company
asset (in terms of bookkeeping)

(2)As an airplane, it has properties like manufacturer, model,
range, capacity, runway length needed, etc.

(3)As an asset, it has properties like cost, depreciation rate,
current value, book value etc.

27

b) Here’s another example:

Dog

Mammal Pet

c) However, multiple inheritance is easily misused. It is easy to
create questionable (or obviously bad) examples. For example,
the following is sometimes cited as an example of a place
where multiple inheritance is useful, but is really a fairly bad
example:

Duck Decoy

Duck Wooden Decoy

3. Multiple inheritance can give rise to some interesting problems.
We will consider two - there are others.

28

a) Features with the same name in two different base classes.

Example: The company plane example. Suppose that the class
airplane had a field called rate (meaning speed), and the class asset
had a field called rate (meaning depreciation rate.) If we declared

CompanyPlane p;

what would p.rate mean?

(Arguably, this might not happen in this particular case - but it
could. If it did, we could avoid it by changing the name of the
field in one of the base classes - if we had access to the source, and
if we could then change all the uses of the old name in other
software that used this class - a nontrivial task.)

b) Repeated inheritance.

Example: Consider the following situation, which could arise if
multiple inheritance is used. (Perhaps in a research university) - and
how the objects in question would need to be laid out in memory.

29

TA

Student FacultyMember

Person

(1)Student

Inherited
fields from
Person

Fields unique
to Student

30

(2)FacultyMember

Inherited
fields from
Person

Fields
unique
to Faculty
Member

(3) ∴ TA

Inherited
fields from
Person

Fields unique
to Faculty
Member

Inherited
fields from
Person

Fields unique
to Student

31

Note that the straightforward layout of a TA object contains
two copies of the Person fields - leading to all sorts of
potential ambiguities.

4. Programming languages that support multiple inheritance have to
deal with these complexities in some way.

EXAMPLE: C++

a) The possibility of having the same field name (or method
name) occur in two different base classes is dealt with by
allowing the use of a class name as a qualifier.

e.g. Airplane::rate is the rate field inherited from class Airplane.

b) The possibility of repeated inheritance can be dealt with by
something called a virtual base class - which we won’t discuss!
(Suffice it to say it’s a tad messy!)

5. Java does not support multiple inheritance. Since multiple
inheritance is not often really needed, this is not a major issue. If
it is needed, there are two ways to get the job done in Java:

a) If only the interface needs to be inherited, but not the
implementation, then Java interfaces can be used.

(1)A Java class can implement any number of interfaces

Example - the main frame in a GUI
class ___________ extends Frame
	 implements ActionListener, WindowEventListener
{
	 ...

32

b) We can use containment.

Example: the CompanyPlane class in Java

(1) implement as

CompanyPlane

Airplane

Asset

(or)

CompanyPlane

Asset

Airplane

(2)Then use “forwarding” of methods - example (first case)
class CompanyPlane extends Asset
{
	 Airplane myInnerPlane;
	 public int getCapacity()
	 {
	 	 return myInnerPlane.getCapacity();
	 }
...

33

