
CPS221 Lecture - Introduction to Database Systems

Last revised October 8, 2012
Objectives:

1.

1. To understand the difference between "data" and "information"
2. To be familiar with key issues such as privacy, integrity, security, and

preservation of information.
3. To introduce the notion of persistence and various ways of achieving it
4. To introduce key DBMS concepts
5. To understand that a DBMS can help address issues like privacy, etc.

Materials:
6.

1. Example from Kroenke/Hatch pp 15-18 to read; projectables of figures 1-5, 1-6,
1-7 and 1-8

2. db2 version of database used for SQL use lab to demo
3. db2 security database

I. Preliminary Notions

A. The terms “data” and “information” are familiar, but actually mean
two different things. The difference is illustrated by the following
example

1. READ example from Kroenke/Hatch pp. 15-18

PROJECT Figures 1-5, 1-6, 1-7, 1-8 while reading.

2. In this unit of the course, we will be talking about database
management systems - that is, systems for recording and providing
access to data. But it is important that we set this discussion in the
context of the purpose of recording data.

a) One purpose is, of course, to facilitate some process.

1

(1)For example, a database at Gordon keeps track of current
enrollments in courses and academic history to facilitate the
day to day operations of the college and to furnish transcript
information alumni will need. (You would be rather
unhappy if you applied to a job or graduate school and the
college couldn't furnish any record of the courses you
completed here!)

(2)Again, a database at an ecommerce site like Amazon keeps
track of orders to facilitate shipping what you have ordered
and billing your credit card - as well as making
recommendations of items you might like the next time you
visit the site.

b) But the raw data can also be processed in various ways to
provide information needed for operations.

(1)For example, data in the registration database can be used to
generate information as to what individuals are close to
graduation based on total credits earned, or what individuals
have exhibited stellar academic performance (based on a gpa
computed from academic history information) and thus
merit graduation with honors, etc.

(2)An ecommerce site may use information about what items
are often purchased together to facilitate recommendations
along the lines of “you might also like ...”

c) Moreover, often the raw data will be processed in various ways
to provide information needed for decision-making.

(1)Course registration data can be processed to provide
information about under-enrolled courses or courses needing
additional sections.

2

(2)An ecommerce site may also use information about what
items are not selling well to facilitate decisions about what
items to feature or stop carrying.

B. When dealing with data about individuals, a number of very important
issues arise.

1. Issues pertaining to data privacy.

a) In essence, privacy is the right of the individual to control who
may access information about them. In the US (and indeed in
many parts of the world) privacy laws regulate access to
personally identifiable information including medical,
educational, and financial records.

b) Of course, privacy cannot be absolute.

(1)Our tax system, for example, requires the disclosure of
certain financial information to agencies like the IRS.
However, there are regulations governing disclosure of such
information.

(2) In the US, certain information about us is considered to be
part of the public record, and hence available to anyone.
Some examples of things in the public record include:

(a) Vital statistics such as birth and death information.

(b)Property ownership information

(c) Most records of court proceedings

(d) Information about elected officials and government
employees, including official correspondence, salary
information, etc.

3

2. Issues pertaining to data integrity.

a) Integrity is concerned with the accuracy of data.

For example, with regard to your grades, privacy is concerned
with who may have access to them, while integrity is concerned
with being sure they are accurately recorded

b) Data integrity begins when data is first stored in a system. But
it goes beyond that, since data is subject to corruption

c) A classic example concerns the corruption of data that can
result from concurrency if appropriate measures are not taken.

Example:

Suppose a husband and wife share a checking account.
Suppose that, at precisely the same time, one partner is
depositing $200 to their checking account, while the other is
withdrawing $100. Suppose, further, that the initial balance in
the checking account is $1000 - so that the correct balance, after
both operations, should be $1100.

If the software that accesses the account does not adequately
deal with concurrency, either of the following scenarios is
possible.

(1)Deposit transaction reads current balance $1000
Deposit transaction adds $200 to yield $1200
Withdrawal transaction reads current balance $1000
Withdrawal transaction subtracts $1000 yielding $900
Deposit transaction writes updated balance $1200
Withdrawal transaction writes updated balance $900

Final balance is $200 too low

4

(2)Deposit transaction reads current balance $1000
Deposit transaction adds $200 to yield $1200
Withdrawal transaction reads current balance $1000
Withdrawal transaction subtracts $1000 yielding $900
Withdrawal transaction writes updated balance $900
Deposit transaction writes updated balance $1200

Final balance is $100 to high

(3) Issues pertaining to data security.
Security is concerned with protecting data against

(a) Access by unauthorized individuals

(b)Modification by unauthorized individuals.
Clearly, data privacy is not possible if unauthorized
individuals can access data which should be private; and
data integrity is not possible if unauthorized individuals
can change information.

(4) Issues pertaining to data preservation.

(a) There are many situations in which the loss of data can
have dire consequences. Consider, for example, what
would happen if the college lost the records of the
courses you have taken, or your bank lost the records of
your bank account.

(b)Many things can result in loss of data: fire, flood,
explosion, theft, or even simple media failure.

(c) Of course, data preservation is not only concerned with
protecting data against total loss, but also against
corruption once it has been stored due to things like
partial failure of media or system problems happening
during update.

5

C. The Notion of Data Persistence

1. Thus far, almost everything we have done has involved objects
that reside in main memory (RAM) on some computer. This
means, of course that those objects "live" only while the program
is running, and cease to exist when the program is terminated,
either via normal exit or as a result of a system crash, power
failure, etc.

a) This is a consequence of the fact that the CPU can only directly
manipulate information that is stored in main memory.
Information stored elsewhere (e.g. on disk) must be brought
into main memory before it can be manipulated.

b) Note that access times for current main memory technologies is
on the order of 60-70 ns. Access time for data on disk is on the
order of 10 ms. Since 1 ms is 1 million ns, this is over a
100,000 to 1 ratio!

2. Obviously, for many applications this is not sufficient. We need
some way to make certain objects PERSISTENT - to preserve
them between runs of the program.

EXAMPLE:

In the registration database example used in a CPS122 lab and in
the RMI lab in this course - and which we will use again in a future
lab - there is no persistence mechanism - all courses start out
empty when we first run the program, and enroll/drop/grade
operations are lost when the program exits. Though we've used the
program to illustrate many interesting concepts, as it stands right
now it's actually useless!

EXAMPLE:

Recall the Video Store project you did in CPS122. Which objects
need to be persistent?

ASK

6

3. Because this is so important, it turns out there are two broad ways
of meeting this need.

a) The approach taken by many familiar applications, utilizing a
File menu with New, Open, and Save options

However, this approach has very serious limitations.

ASK

(a) Data is saved only at certain times.

i) When the user explicitly uses the Save menu option.

ii) In some cases, automatically via some sort of auto-
save facility.

In either case, if the program crashes or the power is
lost, all work done since the last Save is lost. This may
be acceptable for applications like a word processor
(especially one with auto-save where the information
loss in the case of a crash may be relatively small), but
is obviously not acceptable for recording transactions
in a bank or an e-commerce system.

(b) It the stored database is large, then an “Open” or “Save”
operation can take a great deal of time.

b) Another approach is to make use of information that resides
primarily on disk, with a portion of the information temporarily
copied to main memory for access/update, and with changes
made to the in-memory copy immediately written back to disk,
on a transaction-by-transaction basis.

7

II. Fundamental Concepts of Database Management Systems

A. There are actually two broad approaches that can be taken to providing
persistence by storing information on disk: a file-processing approach
and a database management system approach. (The latter, of course, is
the subject of this unit of the course.)

1. Historically, these two approaches evolved successively.

a) Early computer applications were always developed using the
file processing approach, because that was the only approach
known.

b) The DBMS approach was developed in the 1960's, and has
come to be used in a variety of application areas - many falling
into the broad category of "business data processing", but for
other areas as well.

2. The file-processing approach is characterized by a close
relationship between programs and data.

a) Each program is written to process a certain file or group of
files and must embody detailed knowledge about the structure
of each file it uses.

Example: A program written in a C-like language that accesses
a file of students might contain or include a declaration like this

struct Student
{
	 char[7] id;
	 char[15] last_name;
	 char[15] first_name;
	 char[4] major;
};

8

b) As a corollary, any change in the structure of the file will necessitate
a change in the program. In particular, if several programs access
the same file, then if the requirements for one change calling for
adding a field, then all the programs need to change.

Example: Suppose one of the programs needed this file to also
contain the student's birth date. Then a field would need to be added
to the declaration for struct Student, affecting all of the
programs (at least to the extent of calling for a recompilation).

c) To avoid this unintended coupling between unrelated programs,
it is common to design file-processing type systems so that each
application area “owns” its own files.

d) File-processing based systems, then, tend to be characterized by
a proliferation of application-specific files, each with its own
format. Certain data items are stored redunantly - i.e. in more
than one place in the database. This, however, creates new
problems:

ASK CLASS

(1)Wasted storage (becoming less of a problem as storage costs
go down, but still a concern, especially when one thinks of
backup using a network.)

(2)Update problems: when an item of information has to be
changed, it may need to be changed in several different
places in the database. This means extra work each time an
update has to be done.

(3) Inconsistency problems: over time, it is possible that the
database may contain two different values for the same data
item in two different places, because some update operation
did not catch all of the places that need to be changed. This
causes confusion.

9

Example: Gordon's first computerized registration system
maintained a separate student file for each academic term.
Each file contained various personal data on the student, the
name of his advisor, and a list of the courses he/she was
enrolled in that term. The file also contained space to record
the grades for each course taken, though of course these slots
would not be filled in until after the end of the term.

(a) As registration time for a new term approached, the
computer center would copy data from the current term's
file into a file for the new term, blanking out the list of
courses registered for but leaving all else intact.

(b)At some point in time, the registrar's office could have
three different files active:

i) The term just completed, awaiting the posting of
grades and printing of grade reports, plus the
possibility of grade changes by the professor.

ii) The current term.

iii)The upcoming term, since registration for a new term
is held about five weeks into the preceding term.

(c) Any change in basic student information would have to
be posted to ALL the active files. Sometimes, this would
not be done.

i) In one case, a student changed into the computer
science major in mid-term, and I was assigned as her
advisor. This was duly recorded in the current term's
file; however, the file for the new term had already
been created, containing her old advisor's name, and
this was not changed.

10

ii) As a result, I got her grade report for one term, but the next
term the grade report was sent to her old advisor. We caught
this, and the file was updated; but not before the outdated
information had been propagated into yet another term's file.

iii) It took multiple terms before all the records agreed
that I was this student's advisor. In one case, she was
sent back from registration because my signature was
on her card and the computer said someone else was
her advisor (a year after she had changed majors)!

(4)Data isolation problems: it is not easy in such a system to
pull together a report containing all the information stored
on one particular entity, since it is scattered over many files,
each with a distinctive format.

3. In contrast, a database management system approach breaks the
tight coupling between application programs and data, by putting a
software layer in between:

	
 	

 USERS

Application Programs

DBMS

Actual data (stored in
one or more files)

Application programs that need data do not get it directly from the
files where it is stored, but rather from the DBMS, which in turn
gets it from the file. Application programs are not allowed to
access the data directly.

B. In addition to the data itself, the database maintained by the DBMS
also contains META-DATA: data about the data.

11

This takes the form of a data dictionary, which contains at least two
things for each data item in the database:

1. A standard name for the data item which application programs use
when they want to access it - e.g.

student.id, student.last_name, student.first_name, student.major

which specifies where the data item is stored (what table it is in,
and what column in the table), so that the DBMS can locate it.

2. DEMO:

Open a terminal window to system db2 version of registration
database; widen it

db2 -t
connect to cps221 user bjork;
list tables;
describe table student;

C. A DBMS can facilitate addressing the key issues of privacy, security,
integrity and preservation that we looked at earlier.

1. The above demonstration showed only part of the meta-data for
student. In addition to the data type information, the meta-data
may include integrity constraints

Often, the values of certain items in a database are logically
constrained to only certain possibilities.

(1)Example: in the student table, the field id is declared to be
the primary key - which implies that no two rows can
contain the same value - and also declared to prohibit a null
value

12

Demo:

select * from student;
insert into student values('7777777',
 'Gopher', 'Gertrude', 'ART');
insert into student values('1111111', 'Horse',
 'Horace', 'CPSC');

(2)Example: a grade field in a registration system may only
contain values like A, A-, B+ ... D-, F, I or W. Any other
value (e.g. Z) is meaningless. It is important for software
that modifies such an item to ensure that the new value
obeys the appropriate constraints.

(a) Under a file-processing approach, this is difficult since
each program that accesses the data must know and
apply the constraints. The problem becomes especially
severe if a new constraint must be added or an existing
one altered: every program accessing the data must be
modified to the new rules.

(b)Under a DBMS approach, the data dictionary entry for
the item can contain constraint information which the
DBMS software can check whenever the item is changed,
since all changes to the item are done through the DBMS.

DEMO: insert into course_taken
 values('1111111', 'BCM', '103',
 '2009FA', 4, 'Z');

(3)Good use of integrity constraints facilitates preserving data
integrity - one of the key issues we looked at earlier.

2. Another type of information that may be present in the metadata is
security constraints: rules as to who is allowed to examine or
update a given data item.

13

a) In a file processing system, security must be done on a file by
file basis: any user having read/write access to a file has read/
write access to all the fields in it

b) In a DBMS system, security can be applied item by item. For
example, a student might be allowed to see (but not change)
only the grades he/she has earned; the registrar might be
allowed to both see and change the grades of any student

DEMO: connect to security user bjork;
	 set schema registrar;
	 select * from course_taken;
	 update course_taken set grade = 'C+'
	 	 where id = '5555555' and
	 	 	 department = 'BCM' and
	 	 	 course_number = '101';
	 select * from course_taken;
	 connect to security user aardvark;
	 set schema registrar
	 select * from course_taken;
	 select * from student_info;
	 update course_taken set grade = 'A'
	 	 where id = '1111111';

c) Good use of security constraints can facilitate both preserving
data privacy and data security - tw more of the key issues we
looked at earlier.

3. A DBMS can take care of concurrency issues without the various
programs accessing the same database even needing to be aware of
each other - we discuss this in CPS352 .

a) In a file-processing system, every program that accesses a
shared file needs to be aware of all the other possible accesses
to that file. (Or - and more typically - files are locked so that
only one program can be modifying a given file at a time.)

14

b) A DBMS can manage concurrent access to data automatically.

DEMO:

start two "bjork" connections to accounts using db2 -t +c
widen windows
in both windows: select * from accounts

Now consider the following series of operations, which might
be used to effect a transfer of money from one account to
another. Clearly, we don't want someone else to be able to see
the balances between these two operations, lest he/she
mistakenly believe that 'Aardvark' has $100 more than he really
does
update accounts
	 set checking_balance = checking_balance +
100
	 where number = 42;
update accounts
	 set savings_balance = savings_balance - 100
	 where number = 42;

Issue the first update from one window, then try
select * from accounts; from the other. Note how it is
blocked. Now finish the transaction and commit it - note how
the access attempt can now “see” the updated balances

(Note: normally db2 treats each statement as a transaction;
issuing +c at startup caused it to require an explicit commit to
end a transaction.

4. Finally, a DBMS can help take care of issues pertaining to system
crashes, backups, etc in such a way as to ensure there is no loss of
data for transactions that have already completed. Again, we
discuss this in CPS352.

15

D. DBMS's also often make it easier for users to get at the data in an ad
hoc way.

1. Under a file processing approach, any access to data requires a
program to be written for that purpose.

For example, the get a report of total enrollement in all courses in
our sample registration database, a program would have to be
written containing:

- The definition of the record layout.
- Code to open and close the file.
- A loop like the following:

	
 count = 0.0;
	 for each record in the enrollment file
	 count ++;

- Code to print the final value of count

If no program has been written to generate a given type of report,
then someone who needs that type of report must either do without
or be willing to have a programmer paid to write it (and be willing
to wait until he/she can finish the program!)

2. Most DBMS's also include a QUERY LANGUAGE which allows
a moderately sophisticated user to get at information in the data
base directly, without going through an application program.

Example: A DBMS that supports the SQL query language would
allow an interactive user to get an answer to the above question by
typing a query like:

connect to cps221;
select 'Total enrollment is ', count(*)
	 from enrolled_in;

16

a) Such queries are possible because the data dictionary is able to
provide a translation between item names such as enrolled_in
and actual physical locations in the database.

b) Thus, our picture becomes:

 USERS

Application Programs Query Language

DBMS

Actual data files

Thus, our DBMS has two interfaces: one for application
programs (which may call the DBMS using the regular
procedure call mechanism of the language they are written in),
and one for direct access by end users, using a query language.

(In fact, some microcomputer DBMS's have only the latter
interface.)

3. Recall the distinction we made earlier between "data" and
"information". The query interface allows users of the database to
not only access the raw data, but also to perform various
operations that convert it into useful information.

E. We have seen that putting a DBMS software layer between the data
and users of the data has many advantages in terms of eliminating
redundancy and inconsistency while facilitating security, integrity,
multi-user access and end-user queries.

1. However, there is a price tag on this: the additional layer of
software can result in a performance penalty:

17

a) At least, there is the additional processing overhead each
application incurs by going through a software layer to get at
the data it needs, rather than getting it directly.

b) If the application software "knows" how the data is stored
physically, it may be able to arrange its accesses to the data in
an optimum way in terms of processing efficiency. The DBMS
level deprives the application software of this knowledge.

c) Sophistication of DBMS design, coupled with increasing
speeds of computer hardware, now typically allow the benefits
of a DBMS without penalizing performance in an observable
way, though the answers on this are far from all being in.
(More on this in CPS352).

2. In assessing the performance of a DBMS (or any system that
services multiple users), some of the factors we looked at in
conjunction with Operating System scheduling turn out to be
relevant again.

a) The notion of throughput.

What do we mean by this?

ASK

In the case of a DBMS, we need to ensure that system
throughput is adequate for the demand. Consider what would
happen to an ecommerce site, say, if the throughput of its
database system were less than the rate of customer
transactions!

b) The notion of response time

What do we mean by this?

ASK

18

Again, with interactive users, this can be critical. Who would
choose to make use of an ecommerce site if the response time to
queries were consistently too slow?

F. Finally, we should note that, in this unit of the course, we will be
focussing on what you might call "traditional" DBMSs that deal with
information that takes the form of numbers and short character strings.

However, we should note that there are specialized databases that deal
with other sorts of information - e.g.

1. Multimedia databases that store video or audio files.

Example: YouTube

2. Document databases that store large text files.

Example: the various journal databases maintained by the library

3. Information retrieval databases

Example: Google

19

