Database Design and Normalization

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 9/27/12
Agenda

- Check-in
- Functional Dependencies (continued)
- Design Project E-R Diagram Presentations
- Database Normalization
- Homework 3
Check-in
Functional Dependencies
Database Design Goal

- Decide whether a particular relation R is in “good” form.
 - Middle ground between the universal relation and relations which suffer from lossy join

- In the case that a relation R is not in “good” form, decompose it into a set of relations $\{R_1, R_2, \ldots, R_n\}$ such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition

- Our theory is based on:
 - functional dependencies
 - database normal forms
 - multivalued dependencies
Functional Dependency (FD)

- When the value of a certain set of attributes uniquely determines the value for another set of attributes
 - Generalization of the notion of a key
 - A way to find “good” relations
 - $A \rightarrow B$ (read: A determines B)

- Formal definition
 - For some relation scheme R and attribute sets A ($A \subseteq R$) and B ($B \subseteq R$)
 - $A \rightarrow B$ if for any legal relation on R
 - If there are two tuples t_1 and t_2 such that $t_1(A) = t_2(A)$
 - It must be the case that $t_2(A) = t_2(B)$
Finding Functional Dependencies

- From keys of an entity
 - Primary and candidate keys

- From relationships between entities
 - One to one, one to many/many to one, and many to many relationships

- Implied functional dependencies
Implied Functional Dependencies

• Initial set of FDs *logically implies* other FDs
 • If $A \rightarrow B$ and $B \rightarrow C$, then $B \rightarrow C$

• Closure
 • If F is the set of functional dependencies we develop from the logic of the underlying reality
 • Then F^{+} (the *transitive closure* of F) is the set consisting of all the dependencies of F, plus all the dependencies they imply
Rules for Computing F+

- We can find F^+, the closure of F, by repeatedly applying Armstrong’s Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ \hspace{1cm} (reflexivity)
 - Trivial dependency
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ \hspace{1cm} (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ \hspace{1cm} (transitivity)

- Additional rules (inferred from Armstrong’s Axioms)
 - If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ \hspace{1cm} (union)
 - If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ \hspace{1cm} (decomposition)
 - If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ \hspace{1cm} (pseudotransitivity)
Applying the Axioms

- \(R = (A, B, C, G, H, I) \)
 \(\begin{align*}
 F &= \{ \ A \rightarrow B, \\
 & \quad A \rightarrow C, \\
 & \quad CG \rightarrow H, \\
 & \quad CG \rightarrow I, \\
 & \quad B \rightarrow H \}\end{align*} \)

- some members of \(F^+ \)
 - \(A \rightarrow H \)
 - by transitivity from \(A \rightarrow B \) and \(B \rightarrow H \)
 - \(AG \rightarrow I \)
 - by augmenting \(A \rightarrow C \) with \(G \), to get \(AG \rightarrow CG \)
 and then transitivity with \(CG \rightarrow I \)
 - \(CG \rightarrow HI \)
 - by augmenting \(CG \rightarrow I \) to infer \(CG \rightarrow CGI \),
 and augmenting of \(CG \rightarrow H \) to infer \(CGI \rightarrow HI \),
 and then transitivity
 - or by the union rule
Algorithm to Compute F^+

- To compute the closure of a set of functional dependencies F:

$$F^+ = F$$

repeat
 for each functional dependency f in F^+
 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F^+
 for each pair of functional dependencies f_1 and f_2 in F^+
 if f_1 and f_2 can be combined using transitivity
 then add the resulting functional dependency to F^+
 until F^+ does not change any further
Algorithm to Compute the Closure of Attribute Sets

• Given a set of attributes α, define the closure of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F

• Algorithm to compute α^+, the closure of α under F

\[
\text{result} := \alpha; \\
\text{while (changes to result) do} \\
\text{for each } \beta \rightarrow \gamma \text{ in } F \text{ do} \\
\quad \text{begin} \\
\quad \quad \text{if } \beta \subseteq \text{result} \text{ then } \text{result} := \text{result} \cup \gamma \\
\quad \text{end}
\]
Example of Attribute Set Closure

- \(R = (A, B, C, G, H, I) \)
- \(F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\} \)

- \((AG)^+\)
 1. result = AG
 2. result = ABCG \((A \rightarrow C \text{ and } A \rightarrow B)\)
 3. result = ABCGH \((CG \rightarrow H \text{ and } CG \subseteq AGBC)\)
 4. result = ABCGHI \((CG \rightarrow I \text{ and } CG \subseteq AGBCH)\)

- Is AG a candidate key?
 1. Is AG a super key?
 1. Does AG \(\rightarrow R? \iff \text{Is } (AG)^+ \supseteq R\)
 2. Is any subset of AG a superkey?
 1. Does A \(\rightarrow R? \iff \text{Is } (A)^+ \supseteq R\)
 2. Does G \(\rightarrow R? \iff \text{Is } (G)^+ \supseteq R\)
Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - For example: \(A \rightarrow C \) is redundant in: \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow C\} \)
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow CD\} \) can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)
 - E.g.: on LHS: \(\{A \rightarrow B, \ B \rightarrow C, \ AC \rightarrow D\} \) can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)

- Intuitively, a canonical cover of \(F \) is a “minimal” set of functional dependencies equivalent to \(F \), having no redundant dependencies or redundant parts of dependencies
Definition of Canonical Cover

- **A canonical cover** for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.

- To compute a canonical cover for F:
 - **repeat**
 - Use the union rule to replace any dependencies in F
 - $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$
 - Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β
 - /* Note: test for extraneous attributes done using F_c, not F/
 - **until** F does not change
 - Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied
Finding a Canonical Cover

• Another algorithm
 • Write F as a set of dependencies where each has a single attribute on the right hand side
 • Eliminate trivial dependencies
 • In which $\alpha \rightarrow \beta$ and $\beta \subseteq \alpha$
 • Eliminate redundant dependencies (implied by other dependencies)
 • Combine dependencies with the same left hand side

• For any given set of FDs, the canonical cover is not necessarily unique
Uses of Functional Dependencies

- Testing for lossless-join decomposition
- Testing for dependency preserving decompositions
- Defining keys
Testing for Lossless-Join Decomposition

- The closure of a set of FDs can be used to test if a decomposition is lossless-join.

- For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

 $$ r = \Pi_{R_1}(r) \ \Pi_{R_2}(r) $$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+:
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

- Does the intersection of the decomposition satisfy at least one FD?
Testing for Dependency Preserving Decompositions

- The closure of a set of FDs allows us to test a new tuple being inserted into a table to see if it satisfies all relevant FDs without having to do a join
 - This is desirable because joins are expensive

- Let F_i be the set of dependencies F^+ that include only attributes in R_i
 - A decomposition is **dependency preserving**, if
 \[(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+ \]
 - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

- The closure of a dependency preserving decomposition equals the closure of the original set

- Can all FDs be tested (either directly or by implication) without doing a join?
Keys and Functional Dependencies

- Given a relation scheme R with attribute set $K \subseteq R$
 - K is a superkey if $K \rightarrow R$
 - K is a candidate key if there is no subset L of K such that $L \rightarrow R$
 - A superkey with one attribute is always a candidate key
 - Primary key is the candidate key K chosen by the designer
- Every relation must have a superkey (possibly the entire set of attributes)
- *Key attribute* – an attribute that is or is part of a candidate key
Design Project Presentations

Part 2: E-R Diagrams
Database Normalization
Database Design Goals (Updated)

• Goals
 • Avoid redundancies and the resulting from insert, update, and delete anomalies by decomposing schemes as needed
 • Ensure that all decompositions are lossless-join
 • Ensure that all decompositions are dependency preserving

• Sometimes you cannot have all three
 • Allow for redundancy to preserve dependencies
 • Or give up dependency preservation to eliminate redundancy
 • Never give up lossless-join as doing so would remove the ability to connect tuples in different relations

• Database normal forms help eliminate redundancy and anomalies
 • Specify a set of decomposition rules to convert a database that is not in a given normal form into one that is
First Normal Form (1NF)

- A relation scheme R is in 1NF if the domains of all attributes in R are atomic
 - Single and non-composite
 - Guarantees that each non-key attribute in R is functionally dependent on the primary key
Second Normal Form (2NF)

- A 1NF relationship scheme \(R \) is in 2NF if each non-key attribute is fully functionally dependent on each candidate key.
 - Functionally dependent on the whole key, not just part of it
 - This restriction does not apply to key attributes
 - Avoids redundancy of information which is dependent on part of the primary key
- Any non-2NF scheme can be decomposed into 2NF schemes by factoring out
 - The non-key attributes dependent on a portion of a candidate key
 - The portion of the candidate key these attributes depend on
- Any 1NF scheme without a composite primary is in 2NF
Third Normal Form (3NF)

- A 2NF relation scheme R is in 3NF if no non-key attribute of R is transitively dependent on a candidate key through some other non-key attribute(s)
 - This restriction does not apply to key attributes
 - Transitive dependencies on a candidate key lead to insert, update, and delete anomalies

- Any non-3NF scheme can be decomposed into 3NF schemes by factoring out
 - The transitively dependent attributes
 - The “transitional” attributes which connect these to the candidate key

- Any non-3NF relation can be decomposed into 3NF in a lossless-join and dependency preserving manner
3NF Decomposition Algorithm

Let F_c be a canonical cover for F;

$i := 0$;

for each functional dependency $\alpha \rightarrow \beta$ in F_c do

if none of the schemas $R_j, 1 \leq j \leq i$ contains $\alpha \beta$

then begin

\begin{align*}
 i &:= i + 1; \\
 R_i &:= \alpha \beta
\end{align*}

end

if none of the schemas $R_j, 1 \leq j \leq i$ contains a candidate key for R

then begin

\begin{align*}
 i &:= i + 1; \\
 R_i &:= \text{any candidate key for } R;
\end{align*}

end

/* Optionally, remove redundant relations */

repeat

if any schema R_j is contained in another schema R_k

then /* delete R_j */

\begin{align*}
 R_j &:= R_k; \\
 i &:= i - 1;
\end{align*}

return (R_1, R_2, \ldots, R_i)
Boyce-Codd Normal Form (BCNF)

- 3NF did not take multiple candidate keys into account
 - BCNF developed to address this

- A normalized relation is in BCNF if every FD satisfied by R is of the form $A \rightarrow B$, where A is a superkey
 - BCNF is a stronger 3NF
 - Every BCNF schema is also in 3NF
 - Not every 3NF schema is in BCNF

- Some 3NF schemas cannot be decomposed into BCNF in a lossless-join and dependency preserving manner

- BCNF does not build on other normal forms
BCNF Decomposition Algorithm

result := \{R\};
done := false;
compute \(F^+\);
while (not done) do
 if (there is a schema \(R_i\) in result that is not in BCNF)
 then begin
 let \(\alpha \rightarrow \beta\) be a nontrivial functional dependency that holds on \(R_i\) such that \(\alpha \rightarrow R_i\) is not in \(F^+\),
 and \(\alpha \cap \beta = \emptyset\);
 \(result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)\);
 end
 else done := true;

Note: each \(R_i\) is in BCNF, and decomposition is lossless-join.
Multivalued Dependencies (MVDs)

- A set of attributes A multi-determines a set of attributes B if
 - In any relation including attributes A and B
 - For any given value of A there is a (non-empty) set of values for B
 - Such that we expect to see all of those B values (and no others) associated with the given A
 - Along with remaining attribute values
 - The number of B values associated with a given A value may vary between A values.
Formal Definition of Multivalued Dependency

• Let \(R \) be a relation schema and let \(\alpha \subseteq R \) and \(\beta \subseteq R \). The **multivalued dependency**

\[
\alpha \rightarrow \rightarrow \beta
\]

holds on \(R \) if in any legal relation \(r(R) \), for all pairs for tuples \(t_1 \) and \(t_2 \) in \(r \) such that \(t_1[\alpha] = t_2[\alpha] \), there exist tuples \(t_3 \) and \(t_4 \) in \(r \) such that:

\[
\begin{align*}
 t_1[\alpha] &= t_2[\alpha] = t_3[\alpha] = t_4[\alpha] \\
 t_3[\beta] &= t_1[\beta] \\
 t_3[R - \beta] &= t_2[R - \beta] \\
 t_4[\beta] &= t_2[\beta] \\
 t_4[R - \beta] &= t_1[R - \beta]
\end{align*}
\]
MVDs and E-R Diagrams

- MVDs correspond to multi-valued attributes

A → B
A ➔ C
Properties of MVDs

- MVDs require the addition of certain tuples
 - Example: copies of a book with multiple authors
 - Opposite to FDs which prohibit certain tuples

- If $A \rightarrow B$, then $A \rightarrow\rightarrow B$
 - FDs are a special case of MVDs

- An MVD is trivial if either of the following is true
 - Its right-hand side is a subset of its left-hand side (just like FDs)
 - The union of its left- and right-hand sides is the entire scheme

- The closure D^+ of D is the set of all FDs and MVDs implied by D
 - D^+ can be computed from the formal definitions of FD and MVD
 - Additional rules of inference (see Appendix C of *Database Systems Concepts*)
Fourth Normal Form (4NF)

- A relation schema R is in **4NF** for all MVDs in D^+ of the form $\alpha \rightarrow \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:
 - $\alpha \rightarrow \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
 - α is a superkey for schema R (in which case it is an FD)
- If a relation is in 4NF it is in BCNF
- 4NF avoids redundancies introduced by MVDs
4NF Decomposition Algorithm

`result: = \{R\};`

`done := false;`

`compute D^+;`

Let D_i denote the restriction of D^+ to R_i

while (not done)

if (there is a schema R_i in `result` that is not in 4NF) **then**

begin

let $\alpha \rightarrow\rightarrow \beta$ be a nontrivial multivalued dependency that holds

on R_i such that $\alpha \rightarrow R_i$ is not in D_i, and $\alpha \cap \beta = \emptyset$;

`result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);`

end

else `done := true;`

Note: each R_i is in 4NF, and decomposition is lossless-join
Database Design Guidelines

- Use the highest normal form possible
 - 4NF unless it is not dependency preserving
 - BCNF unless (in rare cases) it is not dependency preserving
 - 3NF otherwise – never need to compromise beyond this
 - Lower normal forms may be useful for efficiency purposes

- Use good keys
 - Every attribute should depend on the key, the whole key, and nothing but the key (BCNF)
 - Avoid composite keys (automatic 2NF)
 - Generate a unique single-attribute key if needed

- Factor out transitive dependencies (“sub-relations”) into their own schemes (3NF)

- Isolate MVDs to their own schema (4NF)
Approaches to Database Design

- Start with a universal relation and decompose it
 - The approach taken in this lecture
- Start with an E-R diagram
 - Modify it while you normalize it
 - Normalize it when converting it to a relational schema
Homework 3