
HOMEWORK HELP FOR MATH 152

So here’s the next version of Homework Help!!!

I am going to assume that no one had any great difficulties with the problems
assigned this quarter from 4.3 and 4.4. However, if you can’t do them or ones like
them, you won’t be able to do anything else. Clearly Max-Min problems were the
most difficult for people, so the most of these are those.
4.5, 28
Two hallways, one 8 feet wide and the other 6 feet wide, meet at right angles.
Determine the length of the longest ladder that can be carried horizontally from
one hallway into the other.

Here a picture is of course extremely helpful. So draw one with the two hallways
intersecting, and then draw a sample ladder (just a straight line, since we have
a top view and presumably one would want to hold the ladder on the edge so as
to not block even more room) touching the inner corner and the two outside hall
walls. How do we set up this problem? The key is to minimize the length of
this hypothetical ladder! If we do that, then any ladder smaller than that one can
definitely make it through; but a longer one will not, because it will get stuck before
our minimum length. So here, longest actually means shortest. Sort of.

There are several ways to do this. Here is a relatively quick one. The ladder
is clearly the hypotenuse of some right triangle; which one? We can let it be the
hypotenuse of a triangle with base x + 8 and height y + 6, since we know that
in any case the ladder will stretch across the wide hall, plus some, and the thin
hall, plus some different amount. Like I said, drawing it is the only way to really
see this. So the length is

√
(x+ 8)2 + (y + 6)2. Further, we have another relation

between the quantities involved. We look at the triangle formed by the ladder, the
lower hallway, and the perpendicular line to the hall; this is similar to the triangle
formed by the ladder, the upper hallway, and the perpendicular line to the hall. So
by properties of similar triangles, the ratios of similar sides are equal; in this case,
x
6 = 8

y , or xy = 48. So I replace y = 48
x .

Now we do the calculus. We want to minimize
√

(x+ 8)2 + (48/x+ 6)2. The
derivative is

x+ 8− (48/x+ 6)(48x−2)√
(x+ 8)2 + (48/x+ 6)2

We merely check when the numerator is zero, since the denominator always is
positive. This happens when x + 8 = 482+6(48)x

x3 ; we divide both sides by x + 8
(since that is definitely not a solution!) and get x3 = 6(48) = 288. Thus the only
critical point of interest is when x = 3

√
288 = 2 3

√
36, which you can check is in fact

a minimum; for this x, y = 4 3
√

18. Plug these in and get the total ladder length!
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4.5, 30
Conical paper cups are usually made so that the depth is

√
2 times the radius of

the rim. Show that this design requires the least amount of paper per unit volume.
The key to solving this problem is interpreting the second sentence. What are

we being asked? In fact, this is a minimizing problem. Cups are made so that the
ratio depth

radius =
√

2, and we want to show that this ratio gives us the least paper per
unit volume (hence cheapest). And what is ’least paper per unit volume?’ One way
to interpret this is simply as the minimum of the ratio area

volume .
So let’s use the formulae we have in the book to help us. Let r be the radius of

the rim and d be the depth of the cup (you may want to draw this; unfortunately
my computer skills aren’t quite up to making and inserting such drawings). We
have the formulae surface area A = πr

√
r2 + d2 and volume V = 1

3πr
2d. We will

fix the volume, so as to find the ratio; let it be π
3 . Then 1

3πr
2d = π

3 , so r2 = 1
d , so

the area will be A = π
√

1
d ( 1
d + d2) = π

√
1
d2 + d2. We wish to minimize this.

We then do the calculus. Let f(x) = π
√

1
d2 + d2. Then f ′(x) = π

2

−2
d3 +1√
1

d2 +d2
.

After a little algebra we see that this is zero precisely when π(d3− 2) = 0, or when
d = 3

√
2. When this happens, r2 = 1

3√2
, so r = 2−1/6. Thus d

r = 21/3+1/6 =
√

2,
which is the desired answer.
4.5, 44
A tapestry 7 feet high hangs on a wall. The lower edge is 9 feet above an observer’s
eye. How far from the wall should the ovserver stand to obtain the most favorable
view? Namely, what distance from the wall maximizes the visual angle of the
observer?

This problem has one fundamental fact behind it. This is the fact that an angle
is maximized when the tangent of that angle is maximized. This follows from
the fact that tangent is an increasing function. Without this, all we could do is
maximize the value of tangent for a given distance of the observer, as we shall soon
see. But this distance will also maximize the angle itself, since if there was some
other distance which maximized the angle, then (as tangent is increasing) tangent
would be maximized there, and not the original place. This is difficult to convey
without pictures or live explanation, so please come on in if it’s still unclear.

So we imagine the situation; the observer looks up from the ground a total of α
radians to see the top of the tapestry, 16 feet up, and looks only β radians to see
its bottom, 9 feet up. So we would like to maximize α − β. For now, we can only
look at tan(α− β). But as noted above, maximizing this is good enough. Further,
we do know tanα and tanβ for a given distance from the wall; they are 16/x and
9/x, respectively. Then we use the formula found on page 46 in the text (which
one could, however, independently derive); tan(α−β) = tanα−tanβ

1+tanα tan β . This gives us

tan(α− β) = 7/x
1+144/x2 = 7x

x2+144 .

The derivative of this is −7x2+7(144)
(x2+144)2 . Since the denominator is always positive,

we need merely check when x2 = 144, which is for x = 12 (the negative value is
meaningless for us). Checking the derivative for nearby points, we see that this is
in fact a maximum. So the answer is that the observer should stand twelve feet
away. Notice that this does not require us to calculuate either the actual tangent at
that point or even the angle! We have proved it is a maximum, and that is enough.
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4.5, 52
A local bus company offers charter trips to Blue Mountain Museum at a fare of 37
dollars per person if 16 to 35 passengers sign up for the trip. The company does
not charter trips for fewer than 16 passengers. The bus has 48 seats. If more than
35 passengers sign up, then the fare for every passenger is reduced by 50 cents for
each passenger in excess of 35 that signs up. Determine the number of passengers
that generates the greatest revenue for the bus company.

This little puzzle has two interesting facets; one, the function describing the
revenue has two parts, and, second, the only allowed solutions are positive integers.
But we can still look for critical points. The pertinent function is

f(x) =

{
37x, 16 ≤ x ≤ 35
(37− .5(x− 35))x, 36 ≤ x ≤ 48

The critical points are thus the (possible) discontinuity at x = 35, 36 and and
critical points of the second case, since (37x)′ = 37 6= 0. But the second expression
has zero derivative only for x = 54.5; in fact, the function is increasing throughout
that time. Then we merely note that f(35) < f(36) (as you can check for yourself)
and that means the endpoint is the absolute maximum. So having 48 passengers
gives the best revenue. Though not necessarily the best ride, depending on the
shocks in the bus.
4.6, 21
Find all pertinent information about f(x) = x3 − 9x.

We know that it factors: x3 − 9x = x(x − 3)(x + 3). So it has zeros at ±3
and 0. The derivative is 3x2 − 9, which is zero at ±

√
3. Using the corollary to

the intermediate value theorem, since f ′(−3) > 0, f ′(0) <= 0 and f ′(3) > 0, we
know that f is increasing on (−∞,−

√
3) ∪ (

√
3,∞) and decreasing on (−

√
3,
√

3.
Thus it has a local maximum at −

√
3 and a local minimum at

√
3. Further, we can

examine the second derivative f ′′(x) = 6x. This is positive for x > 0 and negative
for x < 0. So f is concave down on (−∞, 0) and concave up on (0,∞). Thus (0, 0)
is a point of inflection.
4.6, 28

Find all pertinent information about f(x) =

{
2x+ 4, x ≤ −1
3− x2, x > −1

.

First we check to see if it is continuous and/or differentiable at x = −1, since
that is a change in definition. We have limx→−1+ f(x) = 2 = f(−1), so it is con-
tinuous. Further, limx→−1+ f ′(x) = 2 = limx→−1− f(x), so it is even differentiable
everywhere. Clearly the only zeros of f are at x = −2 and x =

√
3, since the

other possibility of x = −
√

3 is not zero for this f . The derivative is f ′(x) = 2 for
x ≤ −1, and f ′(x) = −2x for x > −1, so the function is increasing for x < 0 and
decreasing for x > 0. On the linear part it is neither concave up nor concave down,
while f ′′(x) = −2 for x > −1 so it is concave down there. Hence there is no point
of inflection.
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4.7, 2
Look on page 246 of your text. Answer the questions given.

We see that limx→∞ g(x) = d and limx→b+ g(x) = C. There are two vertical
asymptotes, namely x = a and x = b. We have already noted the horizontal
asymptote y = d. There appears to be a vertical tangent at x = p, and a vertical
cusp at x = q.
4.7, 32
Determine whether or not the graph of f(x) =

√
4− x2 has a vertical tangent or a

vertical cusp at c = 2.
This was quite a tricky problem for many of you. The best answer I saw was ”it’s

half a tangent.” Why is this? Well, for one thing f isn’t even defined for x > 2.
Now this is no barrier for it to be a vertical asymptote, but the vertical cusps
and tangents ordinarily require a little more. You can check that f ′(x) = − x√

4−x2

has a limit limx→2− f
′(x) = −∞; but there isn’t any function left over to have

limx→2+ f ′(x) = −∞ for a vertical tangent or limx→2+ f ′(x) = ∞ for a vertical
cusp! Incidentally, the graph of this is just a semicircle of radius two, the half
above the x-axis.
4.8, 55
A function f is continuous, differentiable for all x 6= 0, and f(0) = 0. Find relevant
information based on the graph of the derivative of f on page 255.

Since the derivative is positive on (−∞,−1) ∪ (0, 1) ∪ (3,∞), that is also where
f is increasing; hence f is decreasing on (−1, 0) ∪ (1, 3). The critical numbers are
x = −1, 0, 1 and 3. I cannot sketch the graph of f ′′, but again note that f ′ is
increasing on (−∞,−3) ∪ (2,∞), so this is where f is concave up, and similarly f
is concave down on (−3, 0)∪ (0, 2). Finally, the horizontal asymptote visible for f ′

indicates there is also one there for f , though of course we cannot tell what value
limx→−∞ f(x) takes on.
4.8, 57
Show that the lines y = (b/a)x and y = −(b/a)x are oblique asymptotes of the
hyperbola

x2

a2
− y2

b2
= 1.

What does it mean to be an asymptote? That means that the function ap-
proaches a given line arbitrarily close, the further out one goes. In particular, we
can say an asymptote to L(x) exists if limx→∞ f(x)−L(x) = 0. So then the question
here is, are the given lines asymptotes? Since the hyperbola is clearly symmetric
about the x-axis, I will only consider positive y; this enables me to rewrite the
equation as y =

√
b2(x2/a2 − 1).

So limx→∞ f(x)−L(x) = limx→∞
√
b2(x2/a2 − 1)− (b/a)x. We can rewrite this

as (assuming a, b > 0) limx→∞(b/a)(
√
x2 − a2−x). However, as x gets exceedingly

large,
√
x2 − a2 does indeed approach x, since the a2 becomes relatively inconse-

quential (or use the theorems on limits commuting with continuous functions to see
this more rigorously). So the whole limit becomes zero, as desired. The other cases
(where we don’t have a, b > 0 or we go to −∞ are similar.
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5.1, 12
Given that P = {x0, x1, . . . , xn} is an arbitrary partition of [a, b], find Lf (P ) and
Uf (P ) for f(x) = x+ 3. Use this answer to evaluate

∫ b
a
f(x)dx.

The minimum value of f(x) on [xi−1, xi] is clearly xi−1 + 3, and the maximum
value is xi + 3 on the same interval, since the function is increasing. So our sums
look like

Uf (P ) = (x1 − x0)(x1 + 3) + (x2 − x1)(x2 + 3) + · · ·+ (xn − xn−1)(xn + 3) and

Lf (P ) = (x1 − x0)(x0 + 3) + (x2 − x1)(x1 + 3) + · · ·+ (xn − xn−1)(xn−1 + 3).
These sums collapse somewhat, because 3(x1−x0)+3(x2−x1)+· · ·+3(xn−xn−1) =
3(xn − x0). So we have

Uf (P ) = (x1 − x0)(x1) + · · ·+ (xn − xn−1)(xn) + 3(b− a) and

Lf (P ) = (x1 − x0)(x0) + · · ·+ (xn − xn−1)(xn−1) + 3(b− a).
We evaluate the integral by considering what happens to the lower and upper

sums. I refer you at this point to the file bookdiff.pdf, which describes in greater
detail exactly what the difference is. In either case, of course, we get 3(b − a) +
(b2 − a2)/2.
5.1, 18
Let f be continuous on [a, b], let P = {x0, x1, . . . xn} be a partition of [a, b], and let
S∗(P ) be any Riemann sum generated by P . Show that

Lf (P ) ≤ S∗(P ) ≤ Uf (P ).

For any subinterval [xi−1, xi], we know that the value for Lf ismi = min[xi−1,xi] f(x),
and the value for Uf will be Mi = max[xi−1,xi] f(x). Now the value for any old
Riemann sum will be f(x∗i ), which by definition of M and m has the property
Mi ≥ f(x∗i ) ≥ mi. Thus (∆xi)Mi ≥ (∆xi)f(x∗i ) ≥ (∆xi)mi as well. But we add
up a finite number of such things for all three types of sums! So

(∆x1)M1+· · ·+(∆xn)Mn ≥ (∆x1)f(x∗1)+· · ·+(∆xn)f(x∗n) ≥ (∆x1)m1+· · ·+(∆xn)mn

which is just Lf (P ) ≤ S∗(P ) ≤ Uf (P ).
5.1, 23,24 and 28

Assume that f and g are continuous, a < b, and
∫ b
a
f(x)dx >

∫ b
a
g(x)dx. Which

statements hold for all partitions P of [a, b]?
We have Lg(P ) < Uf (P ), because Lg(P ) <

∫ b
a
g(x)dx <

∫ b
a
f(x)dx < Uf (P ) for

any partition (by definition of the upper and lower sums). But Lg(P ) < Lf (P ) is
not necessarily true; for instance, for the partition P = {a, b}, if f(a) = g(a) and
both functions are increasing, will give lower sums which are equal. Finally, by
the same reasoning, except using f(b) = g(b), we don’t necessarily have Ug(P ) <∫ b
a
f(x)dx all the time.
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5.2, 12
For F (x) =

∫ x
1

sinπt dt, compute F ′(−1), F ′(0), F ′( 1
2 ), and F ′′(x).

By the first fundamental theorem of calculus, F ′(x) = sinπt. So the answers are
0, 0, 1 and π cosπt.
5.2, 17

Find the derivative of F (x) =
∫ x3

0
t cos t dt.

We use the chain rule. Then, since d
dxx

3 = 3x2 and by the first fundamental
theorem of calculus, we get x3 cosx3(3x2) = 3x5 cosx3.
5.3, 48
Evaluate the integrals ∫ 2

−4

(2x+ 3)dx and
∫ 2

−4

|2x+ 3|dx

By the second fundamental theorem of calculus, the first integral is (x2+3x)2−4 =
6. The second integral needs to be split up into a couple pieces. Since |2x+ 3| = 0
for x = − 3

2 , we compute
∫ −3/2

−4
−(2x+3)dx+

∫ 2

−3/2
(2x+3)dx recalling the definition

of absolute value. By the same theorem, we compute −(x2+3x)−3/2
−4 +(x2+3x)2−3/2,

which simplifies to 9/4 + 4 + 6 + 12 + 9/4 = 26 1
2 .

5.4, 26
Find the area bounded by y = x+ 1, y = cosx, and x = π.

It is easy to see that x + 1 > cosx on the interval in question, namely [0, π].
So we simply calculate

∫ π
0
x + 1 − cosx dx, which is (by the second fundamental

theorem of calculus) (− sinx+ x2

2 + x)pi0 , which comes out to be π2

2 + π.


