
DRAFT: Mathematical Background for
Three-Dimensional Computer Graphics

Jonathan R. Senning
Gordon College

September 2006

ii

Contents

1 Introduction 1

2 Affine Geometry 3
2.1 Affine Space . 3
2.2 Affine Combinations . 6
2.3 Euclidean Space . 7

3 Frames and Homogeneous Coordinates 9
3.1 Frames . 9
3.2 Homogeneous Coordinates . 12

4 Affine Transformations 15
4.1 Affine Transformation of Points . 15
4.2 Affine Transformation of Vectors . 16
4.3 Properties of Affine Transformations . 17
4.4 Matrix Representation of Affine Transformations 18

5 Geometric Transformations 21
5.1 Rotation about an arbitrary axis . 21

6 Shadows and Reflections 25
6.1 Shadows from a point light source . 25
6.2 Shadows from a light at infinity . 27
6.3 Reflections . 28

iii

iv CONTENTS

Chapter 1

Introduction

Introductory Example: The Rendering Pipeline in a Raster Graphics System.
To understand why linear algebra plays such an important role in computer graph-

ics it is necessary to understand something of the entire process from model con-
struction to image display. The process of rendering or displaying three-dimensional
computer graphics can be broken down into several steps. First a model of the three-
dimensional scene must be constructed. A model is constructed of primitive shapes
such as polygons which have various linear transformations applied to them to ori-
ent and position them relative to each other. Next the three-dimensional model must
be projected or mapped into two-dimensions so that it can be displayed. Finally the
two-dimensional data must be converted into a form that the computer can display
(rasterization) and then be displayed. The operations that must be performed by the
computer are organized into a rendering pipeline, shown in Figure 1.1.

Transformer

Clipper

Projector

Rasterizer

Vertices

Pixels

Figure 1.1: Graphics Pipeline

Models are constructed using a world coordinate system. This coordinate system is
meaningful for the model being constructed and is completely independent of the com-
puter graphics system being used. Models are composed of objects that have attributes
such as color and that are oriented and positioned in the world coordinate system.
These objects are usually described by a set of polygons or curved surfaces that fit to-
gether. These in turn are each described by sets of points that are either vertices of poly-
gons or control points for curved surfaces. Depending on the location of the observer

1

2 CHAPTER 1. INTRODUCTION

and the point in the scene being viewed, some objects in a scene may not be entirely
visible or even visible at all. Once the viewing parameters have been determined the
model can be clipped so that only objects that will be visible are retained.

Next, the three-dimensional coordinates must be projected into two-dimensions.
This requires not only the model specification but also a viewpoint or direction of projec-
tion and a viewing or projection plane.

During rasterization all visible points on the object must be shown. Fortunately,
because of how graphics displays work, we don’t need to draw the infinite number
of points found on the visible portion of each object. Graphics displays are usually
divided either physically or logically into pixels, short for picture elements. As the dis-
play contains a finite number of pixels, we need only determine what color to assign
to each pixel. An area of memory in the computer called the frame buffer is dedicated to
holding the data for each pixel and a display controller scans this memory and updates
the display between 60 and 100 times each second.

One desirable attribute of interactive computer graphics systems is speed. Consider
a video game or flight simulator where images must be generated quickly enough that
our visual system sees them as continuous; usually at least 30 frames per second. Each
image may in turn consist of thousands of polygons fitted together to create a scene.
Even today’s personal computer systems can often display millions of polygons each
second. To accomplish high rates of speed the rendering steps are carried out using
special computer hardware built in to the display system of the computer, with differ-
ent rendering steps being carried out concurrently. The pipeline must be “primed” but
once vertices are flowing into it one vertex can be transformed while another is being
clipped and yet another is having a projection applied to it.

It is assumed that the reader is already familiar with basic linear algebra and vector
spaces, as well as simple transformations used in computer graphics such as scaling
and translation, perspective projections, and homogeneous coordinates. We will revisit
each of these transformations and develop them in more detail. In addition we will also
introduce other transformations and projections which are used by real-time computer
graphics systems to draw reflections and shadows.

Chapter 2

Affine Geometry

Recall that vectors in Rn are commonly written as

[
1
0

]
or

 5
2
3

 .

Sometimes, in order to save space these vectors are written as (1, 0) and (5, 2, 3). Thus[
−3

4

]
and (−3, 4)

can both be interpreted as vectors in R2.
One consequence of this approach is that it blurs the distinction between vectors

and points; after all, in most other contexts (−3, 4) is considered to be an ordered pair
specifying the coordinates of a point in the xy-plane, not a vector. In some situations,
however, the distinction between points and vectors is important as points and vectors
have some mutually exclusive properties. A point has location but no extent while a
vector in Rn has both direction and magnitude but is location independent. Why is it,
then, that we have been able to blur the distinction between them for so long?

This question will be answered in chapter 3 but first a new set of mathematical tools
must be introduced.1

2.1 Affine Space

An affine geometry is a geometry consisting of points, free vectors (or just vectors) and
scalars (real numbers). Vectors will be denoted with bold lower-case Roman letters
such as u and v and will be written as column vectors or as the transpose of a row
vector. Points will be denoted with bold upper-case Roman letters (e.g. P and Q) and

1The geometric framework introduced here is described more fully in the University of Washington De-
partment of Computer Science Technical Report “Coordinate-free geometric programming” number 89-09-
16 by Tony D. DeRose.

3

4 CHAPTER 2. AFFINE GEOMETRY

written using parentheses such as (1, 2, 0). Scalars will appear as lower-case Greek
letters: α, β, etc.

DEFINITION 2.1. An affine space A consists of the ordered pair (V, P) where V is a
vector space and P is a set of points. Furthermore, vectors and points in A are related
by the following two axioms:

i. Subtraction Axiom:

(a) For every pair of points P and Q in P there is a unique vector v ∈ V such
that v = P−Q,

(b) For every point Q ∈ P and every vector v ∈ V there is a unique point P ∈ P
such that P−Q = v.

ii. Head-to-Tail Axiom: Every triple of points P, Q and R satisfies

(P−Q) + (Q−R) = P−R.

It is convenient to use A.V and A.P to refer to the vectors and points in the affine
space A. Finally, the dimension of an affine space is determined by the dimension of
embedded vector space.

The first part of the subtraction axiom guarantees that there is one and only one
vector in A.V that “connects” every pair of points in A.P while the second part ensures
that there is a unique point in A.P that can be “connected” with any particular point
in A.P using any particular vector in A.V . The second axiom is merely a statement of
the familiar “head-to-tail” rule for the addition of vectors.

v = P−Q

Q

P

Q

P

P−Q

Q−R

P−R

R

Figure 2.1: Axioms for Operations in an Affine Space

It is useful to define the operation of addition of a point and a vector. We define
v + Q to be the unique point P such that P−Q = v.

THEOREM 2.1. Let the vectors u and v and the points P, Q and R be in the same
affine space. Then

a. P−P = 0,

b. R−Q = −(Q−R),

2.1. AFFINE SPACE 5

P = Q + v

Q

v

Figure 2.2: Sum of a point and a vector

c. v + (Q−R) = (Q + v)−R,

d. Q− (R + v) = (Q−R)− v,

e. P = Q + (P−Q),

f. (Q + u)− (R + v) = (Q−R) + (u− v).

Proof. Replace Q with P in the head-to-tail axiom to get

(P−P) + (P−R) = (P−R).

Using the rules of vector addition and subtraction we see that P−P = 0, proving (a).
To see (b) replace P with R in the head-to-tail axiom to obtain

(R−Q) + (Q−R) = 0

which, after subtracting (R−Q) from both sides, yields the desired result. The proofs
of (c), (d) and (e) are left as exercises (See exercises 6–8). Showing (f) requires several
steps:

(Q + u)− (R + v) = [(Q + u)−R] + [R− (R + v)] — by head-to-tail axiom
= [(Q + u)−R] + [(R−R)− v] — by part (d)
= [(Q + u)−R]− v — by part (a)
= [(Q−R) + u]− v — by part (c)
= (Q−R) + (u− v) — by associative property

This completes the proof.

The operations on the elements of an affine space are summarized in the following
table. Note that absent from this list are the operations of the addition of points and
the product of a point and a scalar.

Operation Result
vector − vector → vector
vector + vector → vector
scalar · vector → vector
point − point → vector
point + vector → point

6 CHAPTER 2. AFFINE GEOMETRY

EXAMPLE 1. Consider the affine space A = (R2, P) where P is the set of points in the
xy-plane. Suppose P = (4, 3) and Q = (1, 2). The operation 2(P −Q) is defined and
yields

2(P−Q) = 2((4, 3)− (1, 2)) = 2
[

3
1

]
=

[
6
2

]
.

Note that distributive property does not apply; 2(P −Q) is defined while 2P − 2Q is
not.

EXAMPLE 2. Suppose A is an affine space such that A.V contains the vector v =[
2

−3

]
and A.P contains the point P = (0, 5). Show that the point Q = (4,−1) is in

A.P .

Solution Computing P−Q = (0, 5)− (4,−1) =
[
−4

6

]
= −2v which is in A.V so

Q is must be in A.P .

2.2 Affine Combinations

In computer graphics it is often desirable to generate a point R on a line passing
through two specified points P and Q. This can be done by forming the sum of one of
these points and a scalar multiple of the vector connecting the two points:

R = Q + α(P−Q). (2.1)

The vector P −Q is shown on the left of Figure 2.3 and the desired point R is shown
on the right. Note the position of the point R on the line through P and Q depends
only on α. Furthermore, R will be between P and Q when 0 < α < 1.

P

P−Q

P

Q Q
R = Q + α(P−Q)

Figure 2.3: Affine Combination

If the distributive property could be applied to the right-hand-side of equation (2.1)
we would obtain

R = Q + α(P−Q) = αP + (1− α)Q

suggesting that R is a weighted average of the two points P and Q. When α = 0 we
find that R = Q and when α = 1 we have R = P. Note as well that if α = 1/2 we have
R = (P + Q)/2 which, although the notation is suspect, recalls the computation of the
midpoint of a line segment. The difficulty is, of course, that the product of a scalar and

2.3. EUCLIDEAN SPACE 7

a point is not defined in general (what, after all, should the product of a scalar and a
point represent?) We can deal with this difficulty by defining the affine combination of
two points:

αP + βQ ≡ Q + α(P−Q) where α + β = 1.

This same operation can be generalized for more than two points:

DEFINITION 2.2. Let A be an affine space with A.P containing the points P1,P2, . . .,Pn

and let α1, α2, . . ., αn be scalars such that α1 + α2 + · · ·+ αn = 1. Then

α1P1 + α2P2 + · · ·+ αnPn ≡ P1 + α2(P2 −P1) + · · ·+ αn(Pn −P1). (2.2)

It is worth noting that the values of the αi are not constrained in any way other
than that they sum to 1; negative as well as positive values are allowed. If the addi-
tional requirement that 0 ≤ αi ≤ 1 is made then the combination becomes a convex
combination.

2.3 Euclidean Space

Affine spaces provide a clear framework for distinguishing points and vectors, but
many desirable and useful properties are missing. Most importantly, at least in the
context of computer graphics, is that no metric exists, i.e., there is no concept of dis-
tance or the measure of an angle. This deficiency can be addressed by defining an
inner product for an affine space. In the context of computer graphics the vector spaces
embedded in affine spaces are usually one of the Rn spaces so it makes sense to use
the familiar dot product for an inner product. An affine space together with an inner
product is called a Euclidean Space.

The length of a vector is computed as ‖v‖ =
√

v · v. Once vectors can have lengths
assigned to them a vector can be normalized by scaling it by the reciprocal of it’s length,
creating a unit vector.

Then angle between two vectors, θ, is defined as

cos θ =
u · v

‖u‖ ‖v‖
or θ = cos−1 u · v

‖u‖ ‖v‖
.

Recall that two vectors are orthogonal if their inner product is zero which occurs when
θ = ±π/2, precisely the angles for which cosine is zero.

8 CHAPTER 2. AFFINE GEOMETRY

2.3 Exercises

1. Let P = (8,−2). Find a vector v so that the
point (2, 5) can be written as P + v.

2. Let A be an affine space whose vector
space is spanned by the vector [−1 3]T

and that contains the point (2, 5). Deter-
mine the affine combination that shows
that the point (15,−34) is in A.

3. Let A be an affine space whose vector
space is spanned by the vectors [2 0 1]T

and [0 −2 5]T and that contains the point
(7,−2, 5). Determine the affine combina-
tion that shows that the point (17, 2, 0) is
in A.

4. Show that the straight line segment con-
necting points P and Q transforms into
a straight line segment connecting L(P)
and L(Q) under the linear transformation
given by L.

5. Show that by replacing α1 with 1 − α2 −
· · · − αn in equation (2.2) that every point
P in A can be written as the point P1 plus
a vector.

6. Prove part (c) in Theorem 2.1.

7. Prove part (d) in Theorem 2.1.

8. Prove part (e) in Theorem 2.1.

Chapter 3

Frames and Homogeneous
Coordinates

In the last chapter it was pointed out that, at least in the context of computer graph-
ics, using vectors in some vector space Rn can lead to confusion between points and
vectors. In addition, the very desirable operation of translation cannot be performed
on vectors in Rn without projecting these vectors into Rn+1. In this chapter we’ll not
only move from the abstract concepts of affine and Euclidean spaces to a concrete co-
ordinate system that can be used in computer graphics, but as a consequence, we’ll
see why it is that homogeneous coordinates provide such an elegant solution to the
translation problem.

Recall that an ordered basis defines a coordinate system for a vector space. We shall
see that a frame is to an affine space what a basis is to a vector space.

3.1 Frames

An n-dimensional affine space A = (V, P) is specified by the vector space V and the set
of points P . The n-dimensional vector space A.V is completely described by providing
a basis for it. From the definition of an affine space it is known that for every pair of
points in A.P there is a vector in A.V that “connects” them. Once a particular point O
is selected from A.P every other point in A.P can be obtained by adding a vector from
A.V to O. Therefore, supplying a basis for A.V and a single point in A.P is sufficient
to specify the affine space A.

DEFINITION 3.1. A frame for the n-dimensional affine space A = (V, P) consists of
the set of basis vectors v1,v2, . . .,vn for A.V and a point O from A.P . The point O
locates the origin of the frame within A. We use the notation F = (v1,v2, . . .,vn,O) to
denote a frame. Every vector u in A.V can be expressed as

u = α1v1 + α2v2 + · · ·+ αnvn

9

10 CHAPTER 3. FRAMES AND HOMOGENEOUS COORDINATES

and every point P in A.P can be written as

P = β1v1 + β2v2 + · · ·+ βnvn + O.

Specifying a frame for an affine space is equivalent to providing a coordinate system
for it; once a frame has been determined any point or vector in the affine space can be
described by a set of scalar values. To do this in matrix notation, however, the following
definition must be made. This is often specified as a third axiom to Definition 2.1:

iii. Coordinate Axiom: For every point P ∈ A.P

(a) 0 ·P ≡ 0 (the zero vector),

(b) 1 ·P ≡ P (the point P).

Note that in one instance the product is defined to be a vector while in the other the
product is a point.

Now consider the frame F = (v1,v2,O) for an affine space A = (R2, P). Any
vector u in A.V can be written as

u = [v1 v2 O]

 α1

α2

0


so that the column vector on the right is a coordinate vector. Similarly, a point P in A.P
can be expressed as

P = [v1 v2 O]

 β1

β2

1


The coordinate vectors of a vector v and a point P relative to frame F are denoted

[v]F and [P]F respectively. When writing coordinates we will write (β1, β2, 1)F for a
point and (α1, α2, 0)F for a vector to make explicit the frame defining the coordinate
system. In cases where there is just one frame being used we will sometimes drop the
F subscript.

EXAMPLE 1. Given the frame

F =
([

2
6

]
,

[
1

−2

]
, (7, 1)

)
determine the point Q that has the coordinates (2, 3, 1)F
Solution We use the coordinates to form a linear combination of the vectors in the
frame which we then add to the frame’s origin. Because we are adding a vector to a
point the result will indeed be a point.

Q = 2
[

2
6

]
+ 3

[
1

−2

]
+ 1 · (7, 1) =

[
7
6

]
+ (7, 1) = (14, 7).

3.1. FRAMES 11

Often it is desirable to find the coordinates of a point relative to one frame given
the coordinates of that point relative to another frame. This operation, called a change
of frames, is analogous to the change of basis operation. Let F = (v1,v2,v3,O) and
G = (u1,u2,u3,Q) be two frames for the 3-dimensional affine space A. To find [P]G
given [P]F = [α1, α2, α3, 1]T we must first write the basis vectors and point in F in
terms of the basis vectors and point in G:

v1 = a1u1 + b1u2 + c1u3

v2 = a2u1 + b2u2 + c2u3

v3 = a3u1 + b3u2 + c3u3

O = a4u1 + b4u2 + c4u3 + Q.

Then

[P]G = [α1v1 + α2v2 + α3v3 + O]G
= α1[v1]G + α2[v2]G + α3[v3]G + [O]G

= [[v1]G [v2]G [v3]G [O]G]


α1

α2

α3

1



=


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

0 0 0 1




α1

α2

α3

1

 .

This can be written more concisely as

[P]G = M [P]F

where the matrix

M =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

0 0 0 1


is the change of frame matrix.

EXAMPLE 2. Let F and G be two frames for the same affine space such that

F =
([

2
6

]
,

[
1

−2

]
, (7, 1)

)
, G =

([
1
2

]
,

[
1
0

]
, (2,−1)

)
.

If [Q]F = (2, 3, 1)F then find [Q]G .

12 CHAPTER 3. FRAMES AND HOMOGENEOUS COORDINATES

Solution The basis vectors in F can be written[
2
6

]
= 3

[
1
2

]
− 1

[
1
0

]
+ 0 · (2,−1),[

1
−2

]
= −1

[
1
2

]
+ 2

[
1
0

]
+ 0 · (2,−1),

(7, 1) = 1
[

1
2

]
+ 4

[
1
0

]
+ 1 · (2,−1)

so the change of frame matrix M is

M =

 3 −1 1
−1 2 4

0 0 1

 .

Knowing M we can compute [Q]G

[Q]G =

 3 −1 1
−1 2 4

0 0 1

 2
3
1

 =

 4
8
1

 .

Note that using the frame G we still recover the same point Q as in example 1:

Q = 4
[

1
2

]
+ 8

[
1
0

]
+ 1 · (2,−1) =

[
12
8

]
+ (2,−1) = (14, 7).

3.2 Homogeneous Coordinates

Recall that one advantage of using homogeneous coordinates is that they allow trans-
lation to be described as a linear transformation, thereby allowing all the transforma-
tions we would like to affect to be represented by matrix multiplication.1 This is very
important as permits a composite transformation to be represented by a single matrix
which in turn means that arbitrarily complex transformations are no more expensive
computationally than a single simple transformation.

EXAMPLE 1. Consider the frame F = (e1, e2, e3,O) for the affine space A where the
ei vectors form the standard basis for R3

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


and O is the point (0, 0, 0). Let

v =

 α1

α2

α3


1For example translation in R2 can be implemented as shear in the plane of R3 containing vectors

[x, y, 1]T .

3.2. HOMOGENEOUS COORDINATES 13

be a vector in R3 and let P = (β1, β2, β3) be a point. The coordinate vectors for v and
P relative to the frame F are

[v]F =


α1

α2

α3

0

 and [P]F =


β1

β2

β3

1



The choice of basis vectors in example 1 was not arbitrary. When the standard basis
vectors (which are orthogonal unit vectors) of Rn are chosen then the coordinates of
points relative to that frame will be homogeneous coordinates.

Actually the definition of homogeneous coordinates is more general than this, and
although the coordinates of a point relative to a particular frame are homogeneous co-
ordinates, it is possible to have homogeneous coordinates that are not coordinates of
a point relative to a frame. The key difference is that it is possible for the last coor-
dinate, which is 1 when we consider the coordinates of a point relative to a frame, to
be some nonzero number other than one. This is made explicit by the definition of
homogeneous coordinates:

DEFINITION 3.2. We define (x, y, z, w) to be a homogeneous coordinate representa-
tion of the point (x/w, y/w, z/w) when w 6= 0. Thus the three-dimensional coordinate
(x, y, z) is represented by a ray in four-dimensions starting at (but not including) the
origin and passing through the point (x, y, z, 1).

Normally transformations applied to points in homogeneous coordinates do not
move the point off the w = 1 plane (we will, however, see one example of how this
can occur, forcing us to renormalize by dividing the coordinates by w) so that, at least in
the context of computer graphics, we are justified in equating frame coordinates and
homogeneous coordinates.

We will use the convention that point notation such as (x, y, z) will be used to de-
scribe points in the usual way and points in an affine space by listing the coordinates,
such as (x, y, z, 1); whether or not the point is expressed in homogeneous coordinates
will be clear from the context.

Chapter 2 began with the question “Why is it possible to blur the distinction be-
tween points and vectors?” The answer is that, when working in a space such as R3,
there is an assumed frame that has an origin. By taking the origin to be (0, 0, 0) we find
that a point has exactly the same coordinates as a vector from the origin to that point,
thus allowing us to use them interchangeably. Of course, when the origin or the the
basis vectors change the coordinates themselves need to change.

14 CHAPTER 3. FRAMES AND HOMOGENEOUS COORDINATES

3.2 Exercises

1. Explain why the set of vectors [x, y, z, 1]T

is not a subspace of R4.
2. Suppose that an affine space A has two

frames

F =
([

1
3

]
,

[
0
2

]
, (1,−5)

)
and

G =
([

1
1

]
,

[
1

−1

]
, (−3, 1)

)
.

Find the change of frame matrix M and
use it to compute [Q]G if [Q]F = (1, 3, 1)F .

3. Suppose M is the change of frame ma-
trix that transforms coordinates relative to
frame F to coordinates relative to frame G.
Prove that M−1 exists.

4. Let Q = α1P1 + α2P2 + · · · + αnPn be an
affine combination of points in an affine
space with frame F . Show that [Q] =
α1[P1] + α2[P2] + · · ·+ αn[Pn].

Chapter 4

Affine Transformations

As discussed in Chapter 1 there are many steps involved between specifying vertices
in world coordinates and actually displaying the polygon defined by those vertices.
Typically geometric transformations such as rotation or scaling are applied first, often
as part of the modeling process, and then projection transformations are applied to
map the three-dimensional data to the two-dimensional viewing plane. A final trans-
formation maps this data to the grid of pixels on the display device. In this chapter we
seek an answer to the question “what effect do the geometric, projection and rendering
transformations have on the shapes and other properties of objects?” To answer this
we first define affine transformations, which can be applied both points and vectors.

4.1 Affine Transformation of Points

DEFINITION 4.1. Let A and B be two affine spaces. The map F : A.P → B.P is an
affine transformation if it preserves affine combinations, i.e.

F (α1P1 + α2P2 + · · ·+ αnPn) = α1F (P1) + α2F (P2) + · · ·+ αnF (Pn).

EXAMPLE 1. Let A = (V, P). Show that T (P) = P + t is an affine transformation for
any vector t ∈ A.V .

Solution Let P1, . . .,Pn be points in A.P such that P = α1P1 + α2P2 + · · ·+ αnPn

for some set of scalars αi where α1 + α2 + · · ·+ αn = 1. Then

T (α1P1 + α2P2 + · · ·+ αnPn) = α1P1 + α2P2 + · · ·+ αnPn + t

= α1P1 + α2P2 + · · ·+ αnPn + (α1 + α2 + · · ·+ αn)t
= α1(P1 + t) + α2(P2 + t) + · · ·+ αn(Pn + t)
= α1T (P1) + α2T (P2) + · · ·+ αnT (Pn).

This affine transformation is, of course, translation.

15

16 CHAPTER 4. AFFINE TRANSFORMATIONS

EXAMPLE 2. Suppose P and Q are two points in an affine space A. We know that the
set of points on the line segment between them are described by (1 − α)P + αQ for
0 ≤ α ≤ 1. If F is an affine transformation then

F ((1− α)P + αQ) = (1− α)F (P) + αF (Q)

which, as α moves from 0 to 1, describes the set of points on a straight line from F (P)
to F (Q). Thus we see that an affine transformation preserves straight lines.

The consequences of the conclusion of this example are rather important, especially
in the context of computer graphics. Since affine transformations preserve straight
lines, only the vertices of polygons need be transformed in the rendering pipeline; the
straight line connecting the transformed points can be generated by affine combination
after the transformation.

4.2 Affine Transformation of Vectors

The affine transformation of points has been defined, but what about transforming vec-
tors? It may seem that transforming points is sufficient since geometric primitives like
polygons and curved surfaces are specified by sets of points, but there is at least one
important case where transformations of vectors are required, that of surface normals.

The process of shading involves adjusting the color assigned to each point on the
surface of an object according to a lighting model. The lighting model describes the
complex interaction between the position and color of each light in a scene with the
color, texture and position of each visible point on the surface of each object in the
scene. The computations involved require the angle of incidence between a light ray
from each source and the surface normal each each point on the surface. A surface
normal at a point is a vector that is perpendicular to a plane tangent to the surface at
that point.

In modern computer graphics application programming interfaces (APIs) the pro-
grammer often specifies a surface normal for each vertex. When transformations such
as rotation or translation are applied to an object, it is important that the normals are
transformed as well. Figure 4.1 shows a polygon with a set associated surface normals
both before and after a rotation operation R which is, as will be seen shortly, an affine
transformation.

Fortunately it is easy to extend the definition of affine transformations to include
the transformation of vectors.

DEFINITION 4.2. Let A and B be two affine spaces and let v be any vector in A.V .
Choose any two points P and Q from A.P such that v = P −Q. The affine transfor-
mation F : A.V → B.V is

F (v) = F (P−Q) ≡ F (P)− F (Q).

Notice that according to the definition any pair of points whose difference is the
vector v can be used for P and Q. In particular if P′ −Q′ = v then it must be the case
that F (P)− F (Q) = F (P′)− F (Q′); see exercise 1.

4.3. PROPERTIES OF AFFINE TRANSFORMATIONS 17

R

Figure 4.1: Rotation of polygon and surface normals

EXAMPLE 1. Show that if F is an affine transformation then

F (P + αv) = F (P) + αF (v).

Solution Recall from the definition of affine combinations that

(1− α)P + αQ = P + α(Q−P)

and let Q be a point such that v = P−Q. Then

F (P + αv) = F (P + α(Q−P))
= F ((1− α)P + αQ)
= (1− α)F (P) + αF (Q)
= F (P) + α(F (Q)− F (P))
= F (P) + αF (Q−P)
= F (P) + αF (v).

4.3 Properties of Affine Transformations

The properties of affine transformations on points and vectors are summarized in the
following theorem.

THEOREM 4.1. Let P and Q be points and u and v be vectors in an affine space A.
Let F : A → B be an affine transformation from A to another affine space B. Then for
all scalars α and β

a. F (αP + βQ) = αF (P) + βF (Q),

b. F (v) = F (P−Q) = F (P)− F (Q) when v = P−Q,

c. F (P + αv) = F (P) + αF (v),

18 CHAPTER 4. AFFINE TRANSFORMATIONS

d. F (u + v) = F (u) + F (v),

e. F (αv) = αF (v).

Proof. The first two properties are the definition of an affine transformation of a point
and a vector. The proof of part (c) was done in example 1.

Showing part (d) is straight forward if P and Q are points in A.P such that u =
P−Q and v = Q−R and the head-to-tail axiom is applied several times.

F (u + v) = F ((P−Q) + (Q−R))
= F (P−R)
= F (P)− F (R)
= F (P)− F (Q) + F (Q)− F (R)
= F (P−Q) + F (Q−R)
= F (u) + F (v).

The proof of part (e) is left as an exercise; see exercise 2.

4.4 Matrix Representation of Affine Transformations

Suppose that A and B are n-dimensional and m dimensional affine spaces respec-
tively. Let A = (u1,u2, . . . ,un,OA) and B = (v1,v2, . . . ,vm,OB) be frames for A
and B. Suppose further that an affine transformation F exists such that F : A → B
so that if P is a point in A.P then Q = F (P) is a point in B.P . Finally, let [P]A =[

α1 α2 · · · αn 1
]T . Then

Q = F (P)
= F (α1u1 + α2u2 + · · ·+ αnun + OA)
= α1F (u1) + α2F (u2) + · · ·+ αnF (un) + F (OA)

4.4. MATRIX REPRESENTATION OF AFFINE TRANSFORMATIONS 19

where the last step is possible because of properties (c), (d) and (e) of Theorem 4.1 (See
exercise 3). Thus

[Q]B = [α1F (u1) + α2F (u2) + · · ·+ αnF (un) + F (OA)]B

=
[

[F (u1)]B [F (u2)]B · · · [F (un)]B [F (OA)]B
]


α1

α2

·
·
·

αn

1



=



a11 a12 · · · a1n a1,n+1

a21 a22 · · · a2n a2,n+1

· · · · ·
· · · · ·
· · · · ·

am1 am2 · · · amn am,n+1

0 0 · · · 0 1





α1

α2

·
·
·

αn

1


since

[F (u1)]B =



a11

a21

·
·
·

am1

0


, [F (u2)]B =



a12

a22

·
·
·

am2

0


, · · · , [F (OA)]B =



a1,n+1

a2,n+1

·
·
·

am,n+1

1


.

The matrix

T =



a11 a12 · · · a1n a1,n+1

a21 a22 · · · a2n a2,n+1

· · · · ·
· · · · ·
· · · · ·

am1 am2 · · · amn am,n+1

0 0 · · · 0 1


is the standard matrix of the affine transformation. In the common cases of two- and three-
dimensional affine spaces T has the form

T =

 a1 a2 a3

b1 b2 b3

0 0 1

 or T =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

0 0 0 1


EXAMPLE 1. Let A = (R2, P) be an affine space withA = (e1, e2,O) where O = (0, 0).
Let T : A → A be defined as T (P) = P+ t where t =

[
α β

]T . Find the 3× 3 matrix
T that implements this transform.

20 CHAPTER 4. AFFINE TRANSFORMATIONS

Solution Since only frame A is used we have

[T (e1)]A = [e1]A =

 1
0
0

 and [T (e2)]A = [e2]A =

 0
1
0


while

[T (O)]A = [O + t]A = [O]A + [t]A =

 0
0
1

 +

 α
β
0

 =

 α
β
1

 .

Thus the matrix T is given by  1 0 α
0 1 β
0 0 1


which is the the standard matrix for translation in two-dimensions using homogenous
coordinates.

4.4 Exercises

1. Let P,Q,P′,Q′ be points in an affine space
A such that P − Q = P′ − Q′. Show
that F (P) − F (Q) = F (P′) − F (Q′) for
any affine transformation F . This exercise
needs a hint or perhaps the proof should
be done in the text with one part left to
an exercise.

2. Prove part (e) in Theorem 4.1.
3. Prove that F (α1v1 + α2v2 + · · · + αnvn +

P) = α1F (v1) + α2F (v2) + · · · +
αnF (vn)+F (P) for scalars α1, . . ., αn, vec-

tors v1, . . .,vn and point P.
4. Determine the matrix representation of the

affine transformation S : A → A if A =
(R2, P) and S(P) = Q where Q = (αx, βy)
if P = (x, y). What type of transformation
is this?

5. Determine the matrix representation of the
affine transformation S : A → A if A =
(R2, P) and S(P) = Q where Q = (x+y, y)
if P = (x, y). What type of transformation
is this?

Chapter 5

Geometric Transformations

5.1 Rotation about an arbitrary axis

Suppose we want to rotate vertices by an angle θ about a line through the origin parallel
to the unit vector v = [x y z]T . This can be accomplished by first performing one or
two rotations to align v with one of the coordinate axes, then rotating by an angle θ
about that axis and finally undoing the first one or two rotations to reset v back to its
original orientation.

In the derivation below we assume that v is not along the x-axis, i.e., y and z are
not both zero. If they are both zero then all we need to do is rotate about the x-axis and
we are done.

Consider the situation diagrammed in Figure 5.1. We begin by rotating an amount

x z

v
d

y

α

Figure 5.1: Original configuration

α about the x-axis to bring v into the xz-plane. Call this new vector vxy . Notice
that a right triangle exists with α as one of its angles and a hypotenuse of length

21

22 CHAPTER 5. GEOMETRIC TRANSFORMATIONS

d =
√

y2 + z2. From this we deduce

sinα =
y

d
, cos α =

z

d
.

The matrix Rx(α) is given by

Rx(α) =


1 0 0 0
0 z/d −y/d 0
0 y/d z/d 0
0 0 0 1

 .

Now we need to rotate about the y-axis by an angle−β to align vxy with the z-axis.
The angle is negative due to the clockwise rotation; see Figure 5.2. Notice that d is now

x
d

−β vxy

Figure 5.2: After the first rotation

the length of the side adjacent to the angle −β and x is the length of the opposite side.
The length of the hypotenuse is 1 since v and hence vxy are both unit vectors. Thus we
have

sin(−β) = x, cos(−β) = d.

Using the fact that sine is odd and cosine is even, we have

sinβ = −x, cos β = d

and our rotation matrix Ry(−β) is given

Ry(−β) =


d 0 −x 0
0 1 0 0
x 0 d 0
0 0 0 1

 .

The matrix Ry(−β) Rx(α) will align the rotation axis with the z-axis. Now we need
to rotate the desired angle θ and then undo the rotations about the y and x axes. To
rotate about the z-axis we need

Rz(θ) =


c −s 0 0
s c 0 0
0 0 0 0
0 0 0 1



5.1. ROTATION ABOUT AN ARBITRARY AXIS 23

with c = cos θ and s = sin θ. To undo the rotations about the other axes we will need
the two matrices

Rx(−α) =


1 0 0 0
0 z/d y/d 0
0 −y/d z/d 0
0 0 0 1

 , Ry(β) =


d 0 x 0
0 1 0 0
−x 0 d 0
0 0 0 1

 .

Multiplying all of these together to find R gives

R(θ, x, y, z) = Rx(−α) Ry(β) Rz(θ) Ry(−β) Rx(α)

which yields

R(θ, x, y, z) =


c(y2 + z2) + x2 (1− c)xy − sz (1− c)xz + sy 0
(1− c)xy + sz c(x2 + z2) + y2 (1− c)yz − sx 0
(1− c)xz − sy (1− c)yz + sx c(x2 + y2) + z2 0

0 0 0 1

 (5.1)

where x2+y2+z2 = 1. Once this matrix is computed, rotations about the axis specified
by v = [x y z]T are no more computationally intensive than rotations about one of the
coordinate axes.

5.1 Exercises

1. Determine the rotation matrix that im-
plements rotation about the vector v =
[1 2 0]T .

2. The manual page for the OpenGL func-
tion glRotatef() shows a transforma-

tion matrix that agrees with that given in
equation 5.1 except for the first three diag-
onal entries, which it lists as x2(1 − c) + c,
y2(1− c) + c, and z2(1− c) + c. Show that
these are equivalent to the first three diag-
onal entries shown in equation 5.1.

24 CHAPTER 5. GEOMETRIC TRANSFORMATIONS

Chapter 6

Shadows and Reflections

The illumination models used by many interactive three-dimensional graphics sys-
tems make many approximations. One consequence of this is that normally shadows
and reflections are not automatically drawn. Both shadows and reflections, however,
provide important visual queues about the relative depths and surface characteristics
of objects and the realism of a scene is greatly enhanced by including these visual ef-
fects. Since they are not automatically drawn, to include them we will have to draw
them ourselves. The shadow for a particular object can be displayed by displaying the
shadow of each polygon that composes the object. Reflections are created by drawing
an object a second time but after applying transformations that locates the object at it’s
apparent position and orientation.

6.1 Shadows from a point light source

Consider the problem of creating a shadow cast by a single polygon onto another poly-
gon. We assume that there is a single light source located at L and that the polygon
on which the shadow is cast is in the shadow plane described by ax + by + cz + d = 0.1

The vertices of the shadow polygon are found by projecting rays from L through the
vertices of the polygon and computing where they intersect the shadow plane. In Fig-
ure 6.1 S is one of the polygon’s vertices and X is the projected vertex on the shadow
plane.

If the frame F = (e1, e2, e3,O) is used then the coordinate vectors for L, S and X
are given by

[L] =


lx
ly
lz
1

 , [S] =


sx

sy

sz

1

 , and [X] =


x
y
z
1

 .

1Recall that the vector [a b c]T is a normal vector for this plane; suggesting that given a polygon
one can find the equation of the plane it defines by using the coordinates of one of the polygon’s normal
vectors.

25

26 CHAPTER 6. SHADOWS AND REFLECTIONS

X

S

L

ax + by + cz + d = 0

Figure 6.1: Vertex S casts shadow from light at L at point X on plane ax+by+cz+d = 0

It is convenient to define n as

n =


a
b
c
d


which allows the equation ax + by + cz + d = 0 to be expressed as

nT [X] = 0

when X is in the shadow plane. The point X also must satisfy

X = S + α(L− S) (6.1)

for some scalar α because X is on the ray passing through both L and S. Combining
these last two equations gives

nT [S] = −α[L− S]

or

α = − nT [S]
nT [L]− nT [S]

.

When this expression for α is substituted back into equation (6.1) we find that

(nT [L]− nT [S])[X] = (nT [L])[S]− ([L]nT)[S]. (6.2)

In arriving at this result the identity (uT v)w = (wuT)v for vectors u,v,w ∈ Rn was
used (see exercise 5. The quantity nT [L] is a constant scalar while [L]nT is a 4×4 con-
stant matrix. To factor [S] out from the right-hand-side we must introduce the iden-
tity matrix in much the same way as was done when solving the eigenvalue equation

6.2. SHADOWS FROM A LIGHT AT INFINITY 27

Ax = λx. Setting k = nT [L] and factoring out [S] from the right-hand-side gives

(k − nT [S])[X] = (kI − [L]nT)[S].

Although it may not yet be clear, the matrix M = kI − [L]nT is the projection matrix
we are looking for. To see this we perform the multiplication on the right-hand-side

(k − nT [S])[X] =


k − alx −blx −clx −dlx
−aly k − bly −cly −dly
−alz −blz k − clz −dlz
−a −b −c k − d




sx

sy

sz

1



=


ksx − lxnT [S]
ksy − lynT [S]
ksz − lznT [S]

k − nT [S]

 .

Once both sides are divided by the fourth element of the product (k− nT [S]), an oper-
ation that is usually done automatically by graphics systems to put coordinate vectors
into standard homogeneous form, we find that we have the coordinate vector for the
point X. To summarize:

1. Given a light position L and a vector n with the coefficients of the projection
plane equation ax+ by + cz +d = 0, the shadow projection matrix M = nT [L]I −
[L]nT .

2. For each vertex S on a polygon, compute M [S] and then “homogenize” this by
dividing by the fourth component to get [X].

6.2 Shadows from a light at infinity

When the light source is very far away from the objects in a scene all the vectors S−L
are nearly parallel. This case often occurs, such as when the sun is modeled as a light
source.

Let l = [lx ly lz]T be a vector specifying the direction of the light rays. Then,
as before, we have

[l] =


lx
ly
lz
0

 , [S] =


sx

sy

sz

1

 , [X] =


x
y
z
1

 , and n =


a
b
c
d

 .

As before we substitute X = S + αl into nT [S] = 0 and solve for α to obtain

α = −nT [S]
nT [l]

28 CHAPTER 6. SHADOWS AND REFLECTIONS

which gives

[X] = [S]− nT [S]
nT [l]

[l]

(nT [l])[X] = (nT [l])[S]− (nT [S])[l]

= (nT [l])[S]− ([l]nT)[S]

k[X] = (kI − [l]nT)[S]

if k = nT [l]. To find [X] we need only compute (kI − [l]nT)[S] and divide by the fourth
element of the product, which is k.

The matrix M = kI − [l]nT is the shadow projection matrix and has the form

M =


k − alx −blx −clx −dlx
−aly k − bly −cly −dly
−alz −blz k − clz −dlz

0 0 0 k

 .

What is useful to note is that M is identical to the shadow projection matrix for a
point light source when [L] is replaced by [l], i.e., when the fourth element of the light
coordinate vector is zero rather than one.

6.3 Reflections

In some ways reflections are easier to implement than shadows.

Reflection plane

Object Apparent location
of reflection

Viewpoint

Figure 6.2: Typical reflection diagram

6.3. REFLECTIONS 29

6.3 Exercises

1. Compute the shadow projection matrix M
for a light source at (−2, 5, 8) and a shadow
projection plane given by z = −10.

2. Compute the shadow projection matrix M
for a light source at (−2, 5, 8) and a shadow
projection plane given by 3x+2y−z +5 =
0.

3. Find the coordinates of the point projected

by the matrix M in exercise 1 from the
point (1, 3, 2).

4. Find the coordinates of the point projected
by the matrix M in exercise 2 from the
point (1, 3, 2).

5. Show that (uT v)w = (wuT)v for u,v,w ∈
Rn.

30 CHAPTER 6. SHADOWS AND REFLECTIONS

