
Chapter 15

Finite Di↵erence Approximation
of Derivatives

15.1 Introduction

The standard definition of derivative in elementary calculus is the following

u0(x) = lim
�x!0

u(x+�x)� u(x)

�x
(15.1)

Computers however cannot deal with the limit of �x ! 0, and hence a discrete
analogue of the continuous case need to be adopted. In a discretization step, the
set of points on which the function is defined is finite, and the function value is
available on a discrete set of points. Approximations to the derivative will have to
come from this discrete table of the function.

Figure 15.1 shows the discrete set of points xi where the function is known.
We will use the notation ui = u(xi) to denote the value of the function at the i-th
node of the computational grid. The nodes divide the axis into a set of intervals
of width �xi = xi+1

� xi. When the grid spacing is fixed, i.e. all intervals are of
equal size, we will refer to the grid spacing as �x. There are definite advantages
to a constant grid spacing as we will see later.

15.2 Finite Di↵erence Approximation

The definition of the derivative in the continuum can be used to approximate the
derivative in the discrete case:

u0(xi) ⇡
u(xi +�x)� u(xi)

�x
=

ui+1

� ui

�x
(15.2)

where now �x is finite and small but not necessarily infinitesimally small, i.e. .
This is known as a forward Euler approximation since it uses forward di↵erencing.
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xi−1 xi xi+1

Figure 15.1: Computational grid and example of backward, forward, and central
approximation to the derivative at point xi. The dash-dot line shows the centered
parabolic interpolation, while the dashed line show the backward (blue), forward
(red) and centered (magenta) linear interpolation to the function.

Intuitively, the approximation will improve, i.e. the error will be smaller, as �x is
made smaller. The above is not the only approximation possible, two equally valid
approximations are:
backward Euler:

u0(xi) ⇡
u(xi)� u(xi ��x)

�x
=

ui � ui�1

�x
(15.3)

Centered Di↵erence

u0(xi) ⇡
u(xi +�x)� u(xi ��x)

2�x
=

ui+1

� ui�1

2�x
(15.4)

All these definitions are equivalent in the continuum but lead to di↵erent approx-
imations in the discrete case. The question becomes which one is better, and is
there a way to quantify the error committed. The answer lies in the application of
Taylor series analysis. We briefly describe Taylor series in the next section, before
applying them to investigate the approximation errors of finite di↵erence formulae.

15.2.1 Taylor series and finite di↵erences

Taylor series have been widely used to study the behavior of numerical approxi-
mation to di↵erential equations. Let us investigate the forward Euler with Taylor
series. To do so, we expand the function u at xi+1

about the point xi:

u(xi +�xi) = u(xi) +�xi
@u

@x

�����
x
i

+
�x2

i

2!

@2u

@x2

�����
x
i

+
�x3

i

3!

@3u

@x3

�����
x
i

+ . . . (15.5)



15.2. FINITE DIFFERENCE APPROXIMATION 115

The Taylor series can be rearranged to read as follows:

u(xi +�xi)� u(xi)
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Truncation Error

(15.6)

where it is now clear that the forward Euler formula (15.2) corresponds to truncat-
ing the Taylor series after the second term. The right hand side of equation (15.6)
is the error committed in terminating the series and is referred to as the trun-
cation error. The tuncation error can be defined as the di↵erence between the
partial derivative and its finite di↵erence representation. For su�ciently smooth
functions, i.e. ones that possess continuous higher order derivatives, and su�-
ciently small �xi, the first term in the series can be used to characterize the order
of magnitude of the error. The first term in the truncation error is the product
of the second derivative evaluated at xi and the grid spacing �xi: the former is a
property of the function itself while the latter is a numerical parameter which can
be changed. Thus, for finite @2u

@x2

, the numerical approximation depends lineraly on
the parameter �xi. If we were to half �xi we ought to expect a linear decrease
in the error for su�ciently small �xi. We will use the “big Oh” notation to refer
to this behavior so that T.E. ⇠ O(�xi). In general if �xi is not constant we pick
a representative value of the grid spacing, either the average of the largest grid
spacing. Note that in general the exact truncation error is not known, and all we
can do is characterize the behavior of the error as �x ! 0. So now we can write:
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+O(�x) (15.7)

The taylor series expansion can be used to get an expression for the truncation
error of the backward di↵erence formula:

u(xi ��xi�1

) = u(xi)��xi�1
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where �xi�1

= xi�xi�1

. We can now get an expression for the error corresponding
to backward di↵erence approximation of the first derivative:

u(xi)� u(xi ��xi�1

)
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(15.9)

It is now clear that the truncation error of the backward di↵erence, while not the
same as the forward di↵erence, behave similarly in terms of order of magnitude
analysis, and is linear in �x:
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Notice that in both cases we have used the information provided at just two points
to derive the approximation, and the error behaves linearly in both instances.

Higher order approximation of the first derivative can be obtained by combining
the two Taylor series equation (15.5) and (15.8). Notice first that the high order
derivatives of the function u are all evaluated at the same point xi, and are the
same in both expansions. We can now form a linear combination of the equations
whereby the leading error term is made to vanish. In the present case this can be
done by inspection of equations (15.6) and (15.9). Multiplying the first by �xi�1

and the second by �xi and adding both equations we get:
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There are several points to note about the preceding expression. First the approx-
imation uses information about the functions u at three points: xi�1

, xi and xi+1

.
Second the truncation error is T.E. ⇠ O(�xi�1

�xi) and is second order, that is
if the grid spacing is decreased by 1/2, the T.E. error decreases by factor of 22.
Thirdly, the previous point can be made clearer by focussing on the important case
where the grid spacing is constant: �xi�1

= �xi = �x, the expression simplifies
to:
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Hence, for an equally spaced grid the centered di↵erence approximation converges
quadratically as �x ! 0:
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Note that like the forward and backward Euler di↵erence formula, the centered dif-
ference uses information at only two points but delivers twice the order of the other
two methods. This property will hold in general whenever the grid spacing is con-
stant and the computational stencil, i.e. the set of points used in approximating
the derivative, is symmetric.

15.2.2 Higher order approximation

The Taylor expansion provides a very useful tool for the derivation of higher or-
der approximation to derivatives of any order. There are several approaches to
achieve this. We will first look at an expendient one before elaborating on the
more systematic one. In most of the following we will assume the grid spacing to
be constant as is usually the case in most applications.

Equation (15.12) provides us with the simplest way to derive a fourth order ap-
proximation. An important property of this centered formula is that its truncation
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error contains only odd derivative terms:
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The above formula can be applied with �x replace by 2�x, and 3�x respectively
to get:
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It is now clear how to combine the di↵erent estimates to obtain a fourth order
approximation to the first derivative. Multiplying equation (15.14) by 22 and
substracting it from equation (15.15), we cancel the second order error term to
get:
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Repeating the process for equation but using the factor 32 and substracting it
from equation (15.16), we get
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Although both equations (15.17) and (15.18) are valid, the latter is not used in
practice since it does not make sense to disregard neighboring points while using
more distant ones. However, the expression is useful to derive a sixth order ap-
proximation to the first derivative: multiply equation (15.18) by 9 and equation
(15.18) by 4 and substract to get:
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The process can be repeated to derive higher order approximations.

15.2.3 Remarks

The validity of the Taylor series analysis of the truncation error depends on the
existence of higher order derivatives. If these derivatives do not exist, then the
higher order approximations cannot be expected to hold. To demonstrate the
issue more clearly we will look at specific examples.
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Figure 15.2: Finite di↵erence approximation to the derivative of the function sin ⇡x.
The top left panel shows the function as a function of x. The top right panel
shows the spatial distribution of the error using the Forward di↵erence (black
line), the backward di↵erence (red line), and the centered di↵erences of various
order (magenta lines) for the case M = 1024; the centered di↵erence curves lie
atop each other because their errors are much smaller then those of the first order
schemes. The lower panels are convergence curves showing the rate of decrease of
the rms and maximum errors as the number of grid cells increases.
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Example 1 The function u(x) = sin ⇡x is infinitely smooth and di↵erentiable, and
its first derivative is given by ux = ⇡ cos ⇡x. Given the smoothness of the function
we expect the Taylor series analysis of the truncation error to hold. We set about
verifying this claim in a practical calculation. We lay down a computational grid on
the interval �1  x  1 of constant grid spacing �x = 2/M . The approximation
points are then xi = i�x� 1, i = 0, 1, . . . ,M . Let ✏ be the error between the finite
di↵erence approximation to the first derivative, ũx, and its analytical derivative
ux:

✏i = ũx(xi)� ux(xi) (15.20)

The numerical approximation ũx will be computed using the forward di↵erence,
equation (15.7), the backward di↵erence, equation (15.10), and the centered dif-
ference approximations of order 2, 4 and 6, equations (15.12), (15.17, and (15.19).
We will use two measures to characterize the error ✏i, and to measure its rate of
decrease as the number of grid points is increased. One is a bulk measure and
consists of the root mean square error, and the other one consists of the maximum
error magnitude. We will use the following notations for the rms and max errors:
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(15.21)

k✏k1 = max
0iM

(|✏i|) (15.22)

The right panel of figure 15.2 shows the variations of ✏ as a function of x for
the case M = 1024 for several finite di↵erence approximations to ux. For the first
order schemes the errors peak at ±1/2 and reaches 0.01. The error is much smaller
for the higher order centered di↵erence scheme. The lower panels of figure 15.2
show the decrease of the rms error (k✏k

2

on the left), and maximum error (k✏k1 on
the right) as a function of the number of cells M . It is seen that the convergence
rate increases with an increase in the order of the approximation as predicted by
the Taylor series analysis. The slopes on this log-log plot are -1 for forward and
backward di↵erence, and -2, -4 and -6 for the centered di↵erence schemes of order
2, 4 and 6, respectively. Notice that the maximum error decreases at the same
rate as the rms error even though it reports a higher error. Finally, if one were to
gauge the e�ciency of using information most accurately, it is evident that for a
given M , the high order methods achieve the lowest error.

Example 2 We now investigate the numerical approximation to a function with
finite di↵erentiability, more precisely, one that has a discontinuous third derivative.
This function is defined as follows:

u(x) ux(x) uxx(x) uxxx

x < 0 sin ⇡x ⇡ cos ⇡x �⇡2 sin ⇡x �⇡3 cos ⇡x
0 < x ⇡xe�x2

⇡(1� 2x2)e�x2

2⇡x(2x2 � 3)e�x2 �2⇡(3� 12x2 + 4x4)e�x2

x = 0 0 ⇡ 0 �⇡3,�6⇡
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Figure 15.3: Finite di↵erence approximation to the derivative of a function with
discontinuous third derivative. The top left panel shows the function u(x) which,
to the eyeball norm, appears to be quite smooth. The top right panel shows
the spatial distribution of the error (M = 1024) using the fourth order centered
di↵erence: notice the spike at the discontinuity in the derivative. The lower panels
are convergence curves showing the rate of decrease of the rms and maximum errors
as the number of grid cells increases.
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Notice that the function and its first two derivatives are continuous at x = 0, but
the third derivative is discontinuous. An examination of the graph of the function in
figure 15.3 shows a curve, at least visually (the so called eye-ball norm). The error
distribution is shown in the top right panel of figure 15.3 for the case M = 1024
and the fourth order centered di↵erence scheme. Notice that the error is very
small except for the spike near the discontinuity. The error curves (in the lower
panels) show that the second order centered di↵erence converges faster then the
forward and backward Euler scheme, but that the convergence rates of the fourth
and sixth order centered schemes are no better then that of the second order one.
This is a direct consequence of the discontinuity in the third derivative whereby the
Taylor expansion is valid only up to the third term. The e↵ects of the discontinuity
are more clearly seen in the maximum error plot (lower right panel) then in the
mean error one (lower left panel). The main message of this example is that for
functions with a finite number of derivatives, the Taylor series prediction for the
high order schemes does not hold. Notice that the error for the fourth and sixth
order schemes are lower then the other 3, but their rate of convergence is the
same as the second order scheme. This is largely coincidental and would change
according to the function.

15.2.4 Systematic Derivation of higher order derivative

The Taylor series expansion provides a systematic way of deriving approximation
to higher order derivatives of any order (provided of course that the function is
smooth enough). Here we assume that the grid spacing is uniform for simplicity.
Suppose that the stencil chosen includes the points: xj such that i� l  j  i+ r.
There are thus l points to the left and r points to the right of the point i where
the derivative is desired for a total of r + l + 1 points. The Taylor expansion is:
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(15.23)
for m = �l, . . . , r. Multiplying each of these expansions by a constant am and
summing them up we obtain the following equation:
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It is clear that the coe�cient of the k-th derivative is given by bk =
Pr

m=�l,m 6=0

mkam.
Equation (15.24) allows us to determine the r + l coe�cients am according to the
derivative desired and the order desired. Hence if the first order derivative is needed
at fourth order accuracy, we would set b

1

to 1 and b
2,3,4 = 0. This would provide

us with four equations, and hence we need at least four points in order to deter-
mine its solution uniquely. More generally, if we need the k-th derivative then the
highest derivative to be neglected must be of order k + p� 1, and hence k + p� 1
points are needed. The equations will then have the form:

bq =
rX

m=�l,m 6=0

mqam = �qk, q = 1, 2, . . . , k + p� 1 (15.25)

where �qk is the Kronecker delta �qk = 1 is q = k and 0 otherwise. For the solution
to exit and be unique we must have: l + r = k + p. Once the solution is obtained
we can determine the leading order truncation term by calculating the coe�cient
multiplying the next higher derivative in the truncation error series:

bk+1
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mk+pam. (15.26)

Example 3 As an example of the application of the previous procedure, let us fix
the stencil to r = 1 and l = �3. Notice that this is an o↵-centered scheme. The
system of equation then reads as follows in matrix form:

0

BBB@

�3 �2 �1 1
(�3)2 (�2)2 (�1)2 (1)2

(�3)3 (�2)3 (�1)3 (1)3

(�3)4 (�2)4 (�1)4 (1)4

1

CCCA

0

BBB@

a�3

a�2

a�1

a
1

1

CCCA =

0

BBB@

b
1

b
2

b
3

b
4

1

CCCA (15.27)

If the first derivative is desired to fourth order accuracy, we would set b
1

= 1 and
b
2,3,4 = 0, while if the second derivative is required to third order accuracy we
would set b

1,3,4 = 0 and b
2

= 1. The coe�cients for the first example would be:
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15.2.5 Discrete Operator

Operators are often used to describe the discrete transformations needed in ap-
proximating derivatives. This reduces the lengths of formulae and can be used
to derive new approximations. We will limit ourselves to the case of the centered
di↵erence operator:
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The second order derivative can be computed by noticing that
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The truncation error can be verified by going through the formal Taylor series
analysis.

Another application of operator notation is the derivation of higher order for-
mula. For example, we know from the Taylor series that
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If I can estimate the third order derivative to second order then I can substitute
this estimate in the above formula to get a fourth order estimate. Applying the �2x
operator to both sides of the above equation we get:
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�x2
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Thus we have

�
2xui = ux +

�x2

3!
�2x[�2xui +O(�x2)] (15.38)

Rearranging the equation we have:
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15.3 Polynomial Fitting

Taylor series expansion are not the only means to develop finite di↵erence approxi-
mation. An another approach is to rely on polynomial fitting such as splines (which
we will not discuss here), and Lagrange interpolation. We will concentrate on the
later in the following section.

Lagrange interpolation consists of fitting a polynomial of a specified defree to
a given set of (xi, ui) pairs. The slope at the point xi is approximated by taking
the derivative of the polynomial at the point. The approach is best illustrate by
looking at specific examples.

15.3.1 Linear Fit

The linear polynomial:

L
1

(x) =
x� xi

�x
ui+1

� x� xi+1

�x
ui, xi  x  xi+1

(15.40)

The derivative of this function yields the forward di↵erence formula:
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A Taylor series analysis will show this approximation to be linear. Likewise if a
linear interpolation is used to interpolate the function in xi�1

 x  xi we get the
backward di↵erence formula.

15.3.2 Quadratic Fit

It is easily verified that the following quadratic interpolation will fit the function
values at the points xi and xi±1

:

L
2

(x) =
(x� xi)(x� xi+1

)

2�x2

ui�1

� (x� xi�1

)(x� xi+1

)

�x2

ui +
(x� xi�1

)(x� xi)

2�x2

ui+1

(15.42)
Di↵erentiating the functions and evaluating it at xi we can get expressions for the
first and second derivatives:
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2�x
(15.43)
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@x2

�����
x
i

=
ui+1

� 2ui + ui�1

�x2

(15.44)

Notice that these expression are identical to the formulae obtained earlier. A Taylor
series analysis would confirm that both expression are second order accurate.
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15.3.3 Higher order formula

Higher order fomula can be develop by Lagrange polynomials of increasing degree.
A word of caution is that high order Lagrange interpolation is practical when the
evaluation point is in the middle of the stencil. High order Lagrange interpola-
tion is notoriously noisy near the end of the stencil when equal grid spacing is used,
and leads to the well known problem of Runge oscillations [1]. Spectral methods
that do not use periodic Fourier functions (the usual “sin” and “cos” functions)
rely on unevenly spaced points.

To illustrate the Runge phenomenon we’ll take the simple example of interpo-
lating the function

f(x) =
1

1 + 25x2

(15.45)

in the interval |x|  1. The Lagrange interpolation using an equally spaced grid is
shown in the upper panel of figure 15.4, the solid line refers to the exact function f
while the dashed-colored lines to the Lagrange interpolants of di↵erent orders. In
the center of the interval (near x = 0, the di↵erence between the dashed lines and
the solid black line decreases quickly as the polynomial order is increased. However,
near the edges of the interval, the Lagrangian interpolants oscillates between the
interpolation points. At a fixed point near the boundary, the oscillations’ amplitude
becomes bigger as the polynomial degree is increased: the amplitude of the 16
order polynomial reaches of value of 17 and has to be plotted separately for clarity
of presentation. This is not the case when a non-uniform grid is used for the
interpolation as shown in the lower left panel of figure 15.4. The interpolants
approach the true function in the center and at the edges of the interval. The
points used in this case are the Gauss-Lobatto roots of the Chebyshev polynomial
of degree N � 1, where N is the number of points.
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Figure 15.4: Illustration of the Runge phenomenon for equally-spaced Lagrangian
interpolation (upper figures). The right upper figure illustrate the worsening am-
plitude of the oscillations as the degree is increased. The Runge oscillations are
suppressed if an unequally spaced set of interpolation point is used (lower panel);
here one based on Gauss-Lobatto roots of Chebyshev polynomials. The solution
black line refers to the exact solution and the dashed lines to the Lagrangian in-
terpolants. The location of the interpolation points can be guessed by the crossing
of the dashed lines and the solid black line.


