Introduction to the Message Passing Interface (MPI)

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 1/41

0 The Message Passing Interface

© What is MPI?
MPI Examples
Compiling and running MPI programs
Error handling in MPI programs
MPI point-to-point communication
MPI datatypes and tags

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 2/41

Outline

0 The Message Passing Interface
© What is MPI?

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 3/41

What is MPI?

@ MPI stands for Message Passing Interface and is a library specification
for message-passing, proposed as a standard by a broadly based
committee of vendors, implementors, and users.

@ MPI consists of

© a header file mpi.h
@ a library of routines and functions, and
© a runtime system.

@ MPI is for parallel computers, clusters, and heterogeneous networks.
@ MPI is full-featured.

@ MPI is designed to provide access to advanced parallel hardware for

e end users
o library writers
o tool developers

@ MPI can be used with C/C++, Fortran, and many other languages.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 4/41

MPI is an API

MPI is actually just an Application Programming Interface (API). As such,
MPI

@ specifies what a call to each routine should look like, and how each
routine should behave, but

@ does not specify how each routine should be implemented, and
sometimes is intentionally vague about certain aspects of a routines
behavior;

@ implementations are often platform vendor specific, and

@ has multiple open-source and proprietary implementations.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 5/41

Example MPI routines

The following routines are found in nearly every program that uses MPI:
@ MPI_Init() starts the MPI runtime environment.
@ MPI_Finalize() shuts down the MPI runtime environment.
@ MPI_Comm_size() gets the number of processes, N,.

@ MPI_Comm_rank() gets the process ID of the current process which is
between 0 and N, — 1, inclusive.

(These last two routines are typically called right after MPI_Init().)

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 6/41

More example MPI routines

Some of the simplest and most common communication routines are:

MPI_Send() sends a message from the current process to another
process (the destination).

MPI_Recv() receives a message on the current process from another
process (the source).

MPI_Bcast() broadcasts a message from one process to all of the
others.

MPI_Reduce() performs a reduction (e.g. a global sum, maximum, etc.)
of a variable in all processes, with the result ending up in a single
process.

MPI_Allreduce() performs a reduction of a variable in all processes,
with the result ending up in all processes.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 7/41

Outline

0 The Message Passing Interface

@ MPI Examples

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 8/41

MPI Hello world: hello.c

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[])

{
int rank;
int number_of_processes;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf ("hello from process %d of %d\n",
rank, number_of_processes)
MPI_Finalize ();
return O;
}

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 9/41

MPI Hello world output

Running the program produces the output

hello from process 3 of 8
hello from process O of 8
hello from process 1 of 8
hello from process 7 of 8
hello from process 2 of 8
hello from process 5 of 8
hello from process 6 of 8
hello from process 4 of 8

Note:

@ All MPI processes (normally) run the same executable

@ Each MPI process knows which rank it is

@ Each MPI process knows how many processes are part of the same job

@ The processes run in a non-deterministic order

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 10 /41

Communicators

Recall the MPI initialization sequence:

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

@ MPI uses communicators to organize how processes communicate
with each other.

@ A single communicator, MPI_COMM_WORLD, is created by MPI_Init() and
all the processes running the program have access to it.

@ Note that process ranks are relative to a communicator. A program
may have multiple communicators; if so, a process may have multiple
ranks, one for each communicator it is associated with.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 11/41

MPI is (usually) SPMD

@ Usually MPl is run in SPMD (Single Program, Multiple Data) mode.
o (It is possible to run multiple programs, i.e. MPMD).
@ The program can use its rank to determine its role:

const int SERVER_RANK = O0;

if (rank == SERVER_RANK)
{
/* do server stuff */
}
else
{
/* do compute mnode stuff */
}

@ as shown here, often the rank 0 process plays the role of server or
process coordinator.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 12 /41

A second MPI program: greeting.c

The next several slides show the source code for an MPI program that
works on a client-server model.

@ When the program starts, it initializes the MPI system then
determines if it is the server process (rank 0) or a client process.

@ Each client process will construct a string message and send it to the
server.

@ The server will receive and display messages from the clients
one-by-one.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 13 /41

#include <stdio.h>
#include <mpi.h>
const int SERVER_RANK
const int MESSAGE_TAG

0;
0;

int main (int argc, char *argv[])
{
int rank, number_of_processes;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == SERVER_RANK)

do_server_work (number_of_processes)
else

do_client_work(rank);

MPI_Finalize ();
return O;

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 14 /41

greeting.c: serv

void do_server_work(int number_of_processes)

{

const int max_message_length = 256;
char message[max_message_length];
int src;

MPI_Status status;

for (src = 0; src < number_of_processes; src++)
{

if (src !'= SERVER_RANK)

{

MPI_Recv(message, max_message_length, MPI_CHAR,
src, MESSAGE_TAG, MPI_COMM_WORLD,
&Zstatus);

printf ("Received: Ys\n", message);

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 15 /41

greeting.c: client

void do_client_work(int rank)

{
const int max_message_length = 256;
char message [max_message_length];
int message_length;
message_length =
sprintf (message, "Greetings from process %d", rank);
message_length++; /% add one for null char */
MPI_Send(message, message_length, MPI_CHAR,
SERVER_RANK, MESSAGE_TAG, MPI_COMM_WORLD);
}

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 16 /41

Outline

0 The Message Passing Interface

@ Compiling and running MPI programs

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 17 /41

Compiling an MPI program

@ Compiling a program for MPI is almost just like compiling a regular C
or C++ program

o Compiler “front-ends” have been defined that know where the mpi.h
file and the proper libraries are found.

@ The C compiler is mpicc and the C4++ compiler is mpic++.
@ For example, to compile hello.c you would use a command like

mpicc -02 -o hello hello.c

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 18 /41

Running an MPI program

Here is a sample session compiling and running the program greeting.c.

$ mpicc -02 -o

$ mpiexec
$ mpiexec
Greetings
$ mpiexec
Greetings
Greetings
Greetings

Note:

-n 1
-n 2
from
-n 4
from
from
from

greeting greeting.c
greeting

greeting

process 1

greeting

process 1

process 2

process 3

@ the server process (rank 0) does not send a message, but does display
the contents of messages received from the other processes.

@ mpirun can be used rather than mpiexec.

@ the arguments to mpiexec vary between MPI implementations.

@ mpiexec (Of mpirun) may not be available.

CPS343 (Parallel and HPC)

Introduction to the Message Passing Interface Spring 2020 19 /41

Deterministic operation?

You may have noticed that in the four-process case the greeting messages
were printed out in-order. Does this mean that the order the messages
were sent is deterministic? Look again at the loop that carries out the
server's work:

for (src = 0; src < number_of_processes; src++)
{

if (src != SERVER_RANK)

{

MPI_Recv(message, max_message_length, MPI_CHAR,
src, MESSAGE_TAG, MPI_COMM_WORLD, &status);
printf ("Received: %s\n", message);

}

The server loops over values of src from 0 to number_of_processes, skipping
the server’'s own rank. The fourth argument to MPI_Recv() is the rank of
the process the message is received from. Here the messages are received
in increasing rank order, regardless of the sending order.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 20 /41

Non-deterministic receive order

By making one small change, we can allow the messages to be received in
any order. The constant MPI_ANY_SOURCE can be used in the MPI_Recv()
function to indicate that the next available message with the correct tag
should be read, regardless of its source.

for (src = 0; src < number_of_processes; src++)
{

if (src !'= SERVER_RANK)

{

MPI_Recv(message, max_message_length, MPI_CHAR,
MPI_ANY_SOURCE, MESSAGE_TAG, MPI_COMM_WORLD,
&status);

printf ("Received: %s\n", message);

}

Note: it is possible to use the data returned in status to determine the
message's source.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 21 /41

Outline

0 The Message Passing Interface

@ Error handling in MPI programs

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 22 /41

MPI function return values

@ Nearly all MPI functions return an integer status code:

e MPI_SUCCESS if function completed without error,
e otherwise an error code is returned,

@ Most examples you find on the web and in textbooks do not check
the MPI function return status value. ..

@ ...but this should be done in production code.

@ It can certainly help to avoid errors during development.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 23 /41

Sample MPI error handler

Here is a sample MPI error handler. If called with a non-successful status

value, it displays a string corresponding to the error and then exits — all
errors are treated as fatal.

void mpi_check_status(int mpi_status)

{
if (mpi_status != MPI_SUCCESS)
{
int len;
char err_string [MPI_MAX_ERROR_STRING];
MPI_Error_string(mpi_status, err_string, &len);
fprintf (stderr, "MPI Error: (%d) %s\n",

mpi_status, err_string)
exit (EXIT_FAILURE);

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 24 /41

Outline

0 The Message Passing Interface

@ MPI point-to-point communication

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020

MPI point-to-point communication routines

MPI provides two main routines for point-to-point communication

MPI_Send() — Send to a message to another process
MPI_Recv() — Receive a message from another process

Both of these have several variants that we'll mention here and see some
of later.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 26 /41

MPI Send ()

The calling sequence for MPI_Send() is

int MPI_Send(

void x*buf, /* pointer to send buffer */

int count, /* number of items to send */
MPI_Datatype datatype, /* datatype of buffer elements */
int dest, /* rank of destination process */
int tag, /* message type identifier */
MPI_Comm comm) /* MPI communicator to use */

@ The MPI_Send() function initiates a blocking send. Here “blocking”
does not indicate that the sender waits for the message to be
received, but rather that the sender waits for the message to be
accepted by the MPI system.

@ It does mean that once this function returns the send buffer may be
changed with out impacting the send operation.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 27 /41

MPI Recv()

The calling sequence for MPI_Recv() is

int MPI_Recv(

void *buf, /* pointer to send buffer */

int count, /* number of items to send */
MPI_Datatype datatype, /* datatype of buffer elements */
int source, /* rank of sending process */

int tag, /* message type tidentifier */
MPI_Comm comm, /* MPI communicator to use */
MPI_Status *status) /* MPI status object */

@ The MPI_Recv() function initiates a blocking receive. It will not return
to its caller until a message with the specified tag is received from the
specified source.

@ MPI_ANY_SOURCE may be used to indicate the message should be
accepted from any source.

@ MPI_ANY_TAG may be used to indicate the message should be accepted
regardless of its tag.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 28 /41

Point-to-point communication modes

Standard Locally blocking, meaning that the routine does not return
until the memory holding the message is available to reuse
(in the case of MPI_send()) or use (in the case of MPI_Recv()).

Buffered In this mode the user supplies buffer space sufficient to hold
an outgoing or incoming message. The routine MPI_Bsend()
returns as soon as the message is copied into the buffer.

Synchronous Similar to the standard mode, except MPI_Ssend() will not
return until the matching receive has been pointed.
Essentially this is explicit blocking.
Ready Similar to the standard mode, except that it is an error to
call MPT_Rsend() before the matching receive has been posted.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 29 /41

Outline

0 The Message Passing Interface

@ MPI datatypes and tags

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 30/41

MPI Datatypes

@ Here is a list of the most commonly used MPI datatypes. There are
others and users can construct their own datatypes to handle special

situations.

’ C/C++ datatype | MPI datatype
char MPI_CHAR
int MPI_INT

float MPI_FLOAT
double MPI_DOUBLE

@ The count argument in both MPI_Send() and MPI_Recv() specifies the
number of elements of the indicated type in the buffer, not the
number of bytes in the buffer.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 31/41

MPI Tags

MPI uses tags to identify messages. Why is this necessary? Isn't just
knowing the source or destination sufficient?

Often processes need to communicate different types of messages. For
example, one message might contain a domain specification and another
message might contain domain data.

Some things to keep in mind about tags:
@ message tags can be any integer.

@ use const int to name tags; it's poor programming style to use
numbers for tags in send and receive function calls.

@ some simple programs (like greeting.c) can use a single tag.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 32 /41

Three re communication functions

As already noted, send and receive are point-to-point communication
functions; one process sending a message to one another process that
receives it.

MPI supports many other communication functions. Three others that
we'll examine today are

© MPI_Bcast(): single process sends message to all processes.

@ MPI_Reduce(): data values in all processes are reduced via some
operation (e.g. sum, max, etc.) to a single value on a single process.

© MPI_Allreduce(): data values in all processes are reduced via some
operation to a single value available on all processes.

These are examples of collective communication. We'll learn more about
these important functions later.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 33 /41

ast ()

The calling sequence for MPI_Bcast() is

int MPI_Bcast (

void xbuf, /* pointer to send buffer */
int count, /* number of items to send */
MPI_Datatype datatype, /* datatype of buffer elements */
int root, /% rank of broadcast root */
MPI_Comm comm) /% MPI communicator to use */

@ all processes call MPI_Bcast ()

@ the data pointed to by buf in the process with rank root is sent to
all other processes

@ upon return, the data pointed to by buf in each process is the same.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 34 /41

MPI_Bcast () example

What will be displayed by the code segment below when run on 4
processors?

MPI_Comm_size (MPI_COMM_WORLD, &number_of_processes)
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

data = 111 * rank;

printf ("Before: process %d has data %03d\n", rank, data);
root = 6 J number_of_processes;

MPI_Bcast (&data, 1, MPI_INT, root, MPI_COMM_WORLD);
printf ("After: process %d has data %03d\n", rank, data);

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 35/41

ast () example output

Here is some example output when run on 4 processors:

Before: process 1 has data 111
Before: process 3 has data 333
After : process 3 has data 222
After : process 1 has data 222
Before: process 0O has data 000
After : process O has data 222
Before: process 2 has data 222
After : process 2 has data 222

Of course, the statements could appear in any order. We see that the data
from the process with rank 2 (since root = 2) was broadcast to all
processes.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 36 /41

MPI Reduce()

The calling sequence for MPI_Reduce() is

int MPI_Reduce (

void *sendbuf, /*
void *recvbuf, /%
int count, /*

MPI_Datatype datatype, /*
MPI_Op op, /*
int root, /*

MPI_Comm comm) /*

pointer to send buffer */
pointer to receive buffer */
number of items to send */
datatype of buffer elements */
reduce operation */

rank of root process */

MPI communicator to use */

@ Contents of sendbuf on all processes are combined via the reduction
operation specified by op (e.g. MPI_SuM, MPI_MAX, etc.) with the result
being placed in recvbuf on the process with rank root.

@ The contents of sendbuf on all processes is unchanged.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 37 /41

MPI Allreduce()

The calling sequence for MPI_Allreduce() is

int MPI_Allreduce(

void *sendbuf, /% pointer to send buffer */

void *recvbuf, /* pointer to receive buffer */
int count, /* number of items to send */
MPI_Datatype datatype, /* datatype of buffer elements */
MPI_Op op, /* reduce operation */

MPI_Comm comm) /% MPI communicator to use */

o Contents of sendbuf on all processes are combined via the reduction
operation specified by op (e.g. MPI_suM, MPI_MAX, etc.) with the result
being placed in recvbuf on all processes.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 38 /41

MPI_Reduce() and MPI_Allreduce() example

What will be displayed by the code segment below when run on 4
processors?

const int MASTER_RANK = 0;
sum = 0;
MPI_Reduce (&rank, &sum, 1, MPI_INT,
MPI_SUM, MASTER_RANK, MPI_COMM_WORLD);
printf ("Reduce: process %d has %3d\n",
rank, sum);

sum = 0;
MPI_Allreduce(&rank, &sum, 1, MPI_INT,
MPI_SUM, MPI_COMM_WORLD);
printf("Allreduce: process %d has %3d\n",
rank, sum);

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 39 /41

MPI_Reduce() and MPI_Allreduce() example output

Here is some example output when run on 4 processors:

Reduce: process 1 has
Reduce: process 2 has
Reduce: process 3 has
Reduce: process 0O has
Allreduce: process 1 has
Allreduce: process 2 has
Allreduce: process 0O has
Allreduce: process 3 has

o O O O

[o> NN) INe))

As in the last example, the statements could appear in any order.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 40 /41

Acknowledgements

Some material used in creating these slides comes from

© MPI Programming Model: Desert Islands Analogy by Henry Neeman,
University of Oklahoma Supercomputing Center.

@ An Introduction to MPI by William Gropp and Ewing Lusk, Argonne
National Laboratory.

CPS343 (Parallel and HPC) Introduction to the Message Passing Interface Spring 2020 41/41

http://www.oscer.ou.edu/ncsiworkshop2012intropar_sipe_distribmem_20120730.pdf
http://www.mcs.anl.gov/mpi/tutorial/mpiintro/MPIIntro.PPT

	The Message Passing Interface
	What is MPI?
	MPI Examples
	Compiling and running MPI programs
	Error handling in MPI programs
	MPI point-to-point communication
	MPI datatypes and tags

