Shared Memory Programming: Threads, Semaphores,

and Monitors

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 1/47

utline

@ Processes
@ The Notion and Importance of Processes
@ Process Creation and Termination
@ Inter-process Communication and Coordination

© Threads
@ Need for Light Weight Processes
@ Differences between Threads and Processes
@ Implementing Threads

© Mutual Exclusion and Semaphores

@ Critical Sections
@ Monitors

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 2/47

Outline

@ Processes
@ The Notion and Importance of Processes

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 3/47

What is a process?

A process is a program in execution.

At any given time, the status of a process includes:

@ The code that it is executing (e.g. its text).
o lts data:
e The values of its static variables.
e The contents of its stack — which contains its local variables and
procedure call/return history.
@ The contents of the various CPU registers — particularly the program
counter, which indicates what instruction the process is to execute
next.

@ Its state — is it currently able to continue execution, or must further
execution wait until some event occurs (e.g. the completion of an 10
operation it has requested)?

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 4/47

What is a process?

The chief task of an operating system is to manage a set of processes.

Single Core CPU:

@ On system with one single-core CPU, there is, at any given time, at
most only one current process — namely the one whose code the
hardware PC register is actually pointing to.

@ Given that there may be many processes that wish to use the CPU,
the operating system kernel is responsible for scheduling the
processes — i.e. determining which process should be current at any
given time.

Multiple CPU/Multiple Core:

@ Of course, on a system with multiple CPU cores there can be more
than one current process - but at most one per core.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 5/47

The process control block

To manage the various processes, the operating system maintains a set of
data structures called process control blocks (PCB’s) — one per process.

Each PCB contains information about its process:
@ The state of the process.

@ The values of the CPU registers (relevant only when the process is
not running; when it is running, these values change constantly).
Note: The set of values may include both values visible to the
programmer and hidden registers such as memory base and limit
registers.

@ Memory management information

@ Scheduling, accounting, and resource allocation information.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 6 /47

Context Switches

One major use of the PCB'’s is in conjunction with a context switch
operation.

@ A context switch occurs whenever the a new process is given use of
the CPU in place of the one that is currently running.

@ During a context switch, the first thing that must happen is that the
register values associated with the currently running process must be
stored into its PCB, to be saved until the process next gets a chance
to run.

@ Then, the stored register values found in the PCB of the new process
are copied into the CPU registers.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 7/47

Outline

@ Processes

@ Process Creation and Termination

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 8/47

Parents and Children

The creator process is called the parent and the new process is called a
child. (By repeated use of the create process service, a parent could
create multiple children, of course.)

Various aspects of the relationship between a parent and child are handled

differently by different systems. These include the memory image,
resources, and process lifetime.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 9/47

Process Resources

Memory Image On a Linux/Unix system, a new child process is created
using the fork() system call. The new process shares its
parent’s text and inherits a copy of its parents data. The
child can later acquire its own, separate text by using the
execve () system call.

Resources Systems impose upper limits on how large a quantity of
various system resources a process can claim (e.g. memory,
open files etc.) On some systems, the resources used by a
child are counted against its parents quota; on others each
child has its own quota.

Process Lifetime Possibility of the child living on after the parent
terminates. On some systems termination of a parent process
automatically causes its children to terminate as well.

Spring 2020 10 /47

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem

Process Termination

A process may terminate itself by invoking a suitable system service.

On many systems, a parent process may also terminate one of its children
through a system service call.

The operating system may terminate processes for various reasons (e.g.,
deadlock recovery).

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 11/47

Outline

@ Processes

@ Inter-process Communication and Coordination

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 12 /47

Shared Memory

@ Some systems allow processes to share physical memory, so that
data written to a given location by one process can be read by
another.

@ In this case the operating system must provide services for declaring a
given region of memory to be shared and for attaching to a shared
region that was created by another process.

@ Some architectures supporting NUMA (non-uniform memory access)
pool all memory on all nodes into one large, shared memory resource.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 13 /47

Message Passing

@ Most systems allow processes to communicate with one another by
means of messages.

@ The operating system must provide facilities for sending and receiving
messages.

@ These may be transmitted within a single computer, or over a
network.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 14 /47

Processes Synchronization

@ Most systems provide some services for synchronization of
processes, so that one process can wait until another process has
reached a certain point in its execution.

@ This is especially important when shared memory is used — a process
that intends to access data that another has written has to wait until
the other process has done so.

15 /47

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020

Outline

© Threads
@ Need for Light Weight Processes

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 16 / 47

Processes and Threads

Around 1970 the notion of process was been broadened to include two
kinds of processes — traditional or heavy weight processes, and light
weight processes — also known as threads.

The motivation for this development was a desire to balance
considerations of efficiency with considerations of software modularity.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 17 /47

The Case for Light Weight Processes

@ The use of multiple processes (of any sort) entails periodic context
switches, in which the CPU is passed from one process to another.

@ Unfortunately, a context switch operation can be quite
time-consuming, especially if a significant number of
memory-management related values must be saved and restored.

@ Thus, one consideration in designing an efficient system is avoiding
excess context switching.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 18 /47

The Case for Light Weight Processes

@ The trend in the design of complex software systems, however, was to
organize these systems as a set of cooperating processes, rather than
as a single monolithic process.

e For example, a producer/consumer sort of problem is often
structured as a pair of processes, perhaps with a third buffer process
mediating between them.

@ Another example: server systems (such as web servers) often use one
process per client served.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 19 /47

The Case for Light Weight Processes

@ The structuring of tasks as a collection of concurrent processes leads,
of course, to increased frequency of context switching - which conflicts
with the goal of minimizing context switches for efficiency reasons.

o Further, if a task is structured as a collection of cooperating
processes, then message-passing overhead is involved when the
processes need to communicate with each other. (This is not an issue
when a task is structured as a single process, or when a collection of
processes operate independently of one another.)

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 20 /47

Outline

© Threads

@ Differences between Threads and Processes

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 21 /47

One way to resolve the tension between modularity and efficiency is to
allow a single process to be structured as a set of individual threads.

o All the threads share the same memory context (code and data).
There is no memory protection between threads in the same process —
any thread may alter any data item.

o Each thread has its own register context (including PC and SP), and
its own stack.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 22 /47

Threads have two major advantages over processes:

@ A context switch between threads it the same process is much faster
than a context switch between processes, since only register context
needs to be saved and restored - not memory management context.
Thus one can have the modularity advantages of separate processes
with less overhead.

@ Since all the threads share the same data, information sharing between
the threads does not require the overhead of message passing.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 23 /47

Outline

© Threads

@ Implementing Threads

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020

Thread Implementation

Threads can be implemented in two different ways:

@ By the use of library routines (e.g. Pthreads), independent of the
operating system. (l.e. the operating system manages a single
process; the process manages its own threads.)

@ By adding a threads facility to the operating system. System services
are required for:

o Creating a new process (initially consisting of a single thread).
e Creating a new thread within an existing process.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 25 /47

Thread Implementation

@ The first approach is simpler, and minimizes the overhead involved in
a context switch between threads (since no system call is involved).

@ The second approach, however, allows one thread in a process to
block itself on an 10 operation while allowing the other threads to
continue executing. For this reason, some systems make both
approaches available.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 26 /47

Thread Implementation

@ On a system that provides threads, processes normally do not share
memory, but threads within a given process always share memory.

@ Processes usually communicate among themselves by message
passing.

@ Threads normally communicate through shared memory (though they
may also use message passing among themselves if desired.)

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 27 /47

Outline

© Mutual Exclusion and Semaphores
@ Critical Sections

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 28 /47

Race Conditions

Consider a multithreaded master-worker program where the master
maintains a list of tickets corresponding to jobs that must be completed.
The following steps are run in parallel until all work has been completed:

@ each worker (1) requests a ticket from them master and then (2) does
the corresponding work.

o the master (1) receives a request from a worker, (2) provides the
current ticket, and (3) increments the ticket.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 29 /47

Race Conditions

Now suppose we have the following sequence of events, given in
chronological order:

worker A requests a ticket

the master receives a request
for a ticket

the master gives the current
ticket to worker A

worker A starts working
a worker B requests a ticket

the master gives the current
ticket to worker B

worker B starts working

the master increments the ticket
the master increments the ticket

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 30/ 47

Race Conditions

We have a problem here — because the master's operations on the ticket
were not atomic, two different worker threads were given the same ticket.

This example may seem contrived because it depends on a very specific
(and perhaps improbable) sequence of events. But it is the very rarity of
these situations that makes them so insidious! They will probably arise in
practice on rare occasions, but are very difficult to locate and fix because
they cannot be reproduced at will.

These situations are called race conditions. A race condition occurs

whenever the outcome of the execution depends on the particular order
that instructions are executed.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 31 /47

Critical Section

We've just seen a simple illustration of the critical section problem:
When two or more processes share data in common, the code that updates
this data is called a critical section. To ensure integrity of the shared data,
we require that at most one process is executing in its critical section for a
given data structure at one time.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 32 /47

Critical Section

To deal with critical sections, we need a methodology that guarantees:

@ Mutual exclusion: Under no circumstances can two processes be in
their critical sections (for the same data structure) at the same time.

@ Progress: At no time do we have a situation where a process is
forced to wait forever for an event that will never occur. (This is also
known as the no deadlock requirement.)

o No starvation: No process waiting for a given resource can be forced
to wait forever while other processes repeatedly lock and unlock the
same resource. (This is also called the bounded wait or the fairness
requirement.)

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 33 /47

One approach to dealing with the critical section problem is the use of a
facility first proposed by Dijkstra called a semaphore.
@ In its simplest form, a semaphore is a boolean variable with two
indivisible hardware operations possible on it:
P(s) || wait(s) | while (s==0); s=0;
V(s) | signal(s) | s=1;
@ The names P and V are from two Dutch words proberen (to wait)
and verhogen (to increment).

@ This is a binary semaphore.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 34 /47

Counting Semaphores

In practice, we often use one of several possible generalizations of the
basic semaphore.

One such generalization is called a counting semaphore, which can
assume any (non-negative) integer value. The operations, which must be
done indivisibly, are

P(s) || wait(s) | while (s<=0); s=s-1;
V(s) || signal(s) | s=s+1;

Note that the binary semaphore is a special case, with s constrained to
assume only the values 0,1.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 35 /47

Semaphore Example: Bounded Buffer Problem

Assume that there are n buffers, each capable of holding a single item. We
use three semaphores: empty_slot and full_slot to count the empty
and full buffers and mutex to provide mutual exclusion for operations on
the buffer pool. Assume mutex is initialized to 1, empty_slot is initialized
to n and full_slot is initialized to O.

Producer Process Consumer Process
while (true) { while (true) {
wait (full_slot);
produce an item wait (mutex);
wait (empty_slot); remove item from buffer

wait (mutex); L.
R signal (mutex);
insert item to buffer signal (empty_slot);

signal (mutex); consume the item
signal (full_slot);
} }
CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 36 /47

Semaphores can be tricky...

There are several challenges in using semaphores to address the critical
section problem:

@ The burden is on the programmer to use the semaphore. There is no
way to stop a programmer from updating a shared variable without
first doing the necessary wait(), short of manually inspecting all code.
Thus, mutual exclusion can be lost through carelessness or laziness.

@ Subtle errors are easily made, and can lead to big problems. E.g.

suppose a particular critical region needs access to data protected by
two different semaphores S; and S,. Then the code

Thread 0 Thread 1

wait(S1); wait(S2); wait (S2); wait(S1);
<critical region> <critical region>
signal(S1); signal (S2) signal (S2); signal(S1)

could lead to deadlock if the two threads both did their first wait()
before either did its second.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 37 /47

Outline

© Mutual Exclusion and Semaphores

@ Monitors

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 38 /47

A monitor provides synchronization between threads through mutual
exclusion and condition variables.
@ A thread-safe class is an example of a monitor.

@ A mutex is mechanism that provides mutual exclusion, often through
an underlying binary semaphore.

@ A condition variable is a container for a set of threads waiting for
some condition to be met.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 39 /47

Condition Variables

Condition variables provide operations wait and signal similar to those in a
semaphore, but there are some important differences:

@ A process executing a wait is always blocked.

@ A signal executed when the condition’s queue is empty has no effect;
it is not remembered.

@ The queue of threads waiting on a given signal is usually FIFO.

To emphasize this difference, in many monitor implementations notify is
used rather than signal.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 40 /47

Example Monito

monitor Buffer

{
public:
Buffer (void);
void insert(char c);
char remove(void);
private:
const int size = 100;
char buff[sizel;
int in, out;
bool full;
condition not_empty, not_full;
};
Buffer::Buffer(void)
{
in = 0;
out = 0;
full = false;
};

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem

Spring 2020

41/47

Example Monito

void Buffer::insert(char c)
{
if (full) wait(not_full);
buff[in] = c;
in = (in + 1) % size;
full = (in == out);
notify(not_empty);
};

char Buffer::remove(void)
{
int c;
if (!'full && in == out) wait(not_empty);
c = buff[out];
out = (out + 1) % size;
full := false;
notify(not_full);
return c;

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem

Spring 2020

42 /47

A Simple Monito

In the simplest sort of monitor, we impose the restriction that a signal
operation, if it appears in a given procedure, must appear at the very end.
When a signal is executed, the calling thread leaves the monitor, and the
first thread on the queue awaiting that condition is admitted. (This is a
Lambson-Redell monitor). We can picture such a monitor as follows:

Queue of threads awaiting condition C1
o R L]

Queue of threads awaiting condition C2

p ~—@ (Empty)

Queue of threads awaiting condition C3

Queue of threads
awaiting initial
entry

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 43 /47

A Simple Monitor

P is the thread that is currently in the monitor. When P leaves, one other
thread will be admitted.
o If P exits by signalling condition C1, the first Y thread will be
admitted.
o If P exits by signalling condition C3, the first Z thread will be
admitted.
o If P exits by signalling condition C2, or simply exits without
signalling, the first X thread will be admitted.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 44 /47

A More Complex Monitor

As a further extension, we may remove the restriction that a thread can
only signal as its last act. (This would also allow a given call to generate
more than one signal.) This is essentially the original monitor as suggested
by Hoare.

This raises a problem — when a signal awakes a thread, and the signaler
wishes to remain in the monitor, one must yield to the other.

One way to handle this is as follows: if a procedure contains a signal other
than as its last statement, the calling thread is suspended while the
awakened thread completes its work. The calling thread has priority to
re-enter the monitor over any processes awaiting at the main gate.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 45 /47

A More Complex Monitor

This can be pictured as follows:

Queue of threads awaiting condition C1
o o]

Queue of threads awaiting condition C2

p ~—@ (Empty)

Queue of threads awaiting condition C3

Queue of threads
awaiting initial q\

(Lo]

Queue of threads waiting to signal

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 46 / 47

A More Complex Monitor

P is currently in the monitor. When P leaves, one other thread will be
admitted.
o If P exits by signalling condition C1, the first Y thread will be
admitted.
@ If P exits by signalling condition C3, the first Z thread will be
admitted.
o If P exits by signalling condition C2, or simply exits without
signalling, the A process will be re-admitted.
If P signals with work yet to be done, the above will hold, but P will be
added to the queue of waiting signalers (and become an A thread). Note
that this queue could grow to any size, if each awakened process in turn
awakens another in mid-stream.

CPS343 (Parallel and HPC) Shared Memory Programming: Threads, Sem Spring 2020 47 /47

	Processes
	The Notion and Importance of Processes
	Process Creation and Termination
	Inter-process Communication and Coordination

	Threads
	Need for Light Weight Processes
	Differences between Threads and Processes
	Implementing Threads

	Mutual Exclusion and Semaphores
	Critical Sections
	Monitors

