CS352 Lecture: Database System Architectures last revised 11/26/08

I. Introduction

A.

C.

Most large databases require support for accesing the database by
multiple users, often at multiple physical locations (sites). There
are a variety of overall system architectures that can be used to
accomplish this.

Historically, early database systems were based on a CENTRALIZED MODEL,
in which the database resides on a single computer system that allows
access by remote terminals. This is still the model used by many
systems today.

1. Basic characteristics:
a. All data resides on a single computer system.
b. All computations using the data are performed by this system.

c. Remote access is provided by "dumb terminals" or PC's running
terminal emulation software.

Example: Gordon's old administrative computer system used this
model since it was first installed in 1979. The
administrative database resided on a single computer system
(originally a PDP-11/70, then a VAX-11/780, then a cluster
of three Alphas). Campus offices accessed this database via
DEC VTxxx terminals or PC's running terminal emulation
software, or later via web-based applications accessing the
database through a web server running on the same system.

2. The chief advantage of this approach is simplicity - for installing
and maintaing software, performing backups, and managing issues
such as concurrency and recovery.

3. However, the centralized model has a number of disadvantages:

a. Typically centralized storage and manipulation of data goes
hand-in-hand with centralized CONTROL of data - users have
limited autonomy.

b. "Dumb terminals" support only very unsophisticater user
interfaces - basically just ASCII text and text based menus.

c. A centralized system is totally vulnerable to failure of the
centralized site. Thus, for example, a power failure at the
site where the computer is located can shut down all access to
the database, even at remote sites unaffected by the failure.

d. As the volume of transactions handled by the system grows, it can
become increasingly difficult for a single system to handle the
demand.

These problems - especially the latter - have motivated the development
of alternative system architectures which move away from reliance on
a single computer to perform all processing.



IT.

1. The Client-Server Model
2. Use of Parallel Processing

3. Distributed Databases

The Client-Server Model

A.

The centralized model originated prior to the development of the
microprocessor, which made PC's possible. With the replacement of dumb
terminals by powerful and inexpensive PC's, it becomes possible to shift
some of the burden of computation from the computer system storing the
database to the individual computers serving individual users. This led
to the development of the client-server model, which we have discussed
earlier in the course.

A typical client-server application can be thought of as a system
comprised of several layers.

1. The structure discussed in the text: A "front end" that manages
interaction with the user, and a "back end" that manages the database.

2. A three layer architecture:
a. The user interface layer (typically a GUI).

b. The business layer (performs the actual processing specific to
the application).

c. The database layer.

C. Actually, there are a couple of ways to structure the database layer

that we didn't discuss when we discussed client-server architecture
earlier in the course, because we had not yet discussed the overall
structure of a DBMS.

1. One model is called the TRANSACTION SERVER model - the database
server executes database transactions on behalf of the client, but
need not incorporate any awareness of what purpose the
transactions are actually serving as far as the user's application
is concerned.

a. As noted in the text, when SQL is used as the medium of
communication between the client and the server, it becomes very
possible for the client and server software to be produced by two
different vendors - and, indeed, for one server to service
applications written using many different software packages, and,
as well, for one client to access different servers running
different DBMS's.

b. This shifts the load of application-specific computation from the
server to the client, while still leaving the server responsible
for all query-processing related computation (query parsing,
strategy selection, performing joins, etc.) In particular, no
application-specific code need reside on the server (unless stored
procedures are used, as might be done to support embedded SQL), and
no database-specific code needs to reside on the client.



ITT.

A.

Example: this is the model used by Gordon's new administrative
software. All applications use a common database server running on
a single system. Some are PC-based applications that access the
database directly via ODBC; others access the database through one
of several application servers supporting different adminstrative
applications.

2. It is also possible to use a DATA SERVER model, in which the server
delivers physical database pages to the client, which then performs
computation using them. This shifts some of the database layer load

from the server to the client - but, of course, requires that the client
software know more about the structure of the database, and incorporate

some of the software typically considered part of the DBMS.

In none of the client-server variants we have considered do we do away
with a central system containing the database - we simply reduce the
amount of computation for which it is responsible. Further, all disk
accesses needed are performed on the server's disk(s) that hold the
database.

When the phrase "CLIENT-SERVER" is used without further qualification,
it typically refers to to the Transaction Server model, with SQL
providing the interface between the two layers, often through the use
of ODBC or JDBC.

In addition to removing some of the computational load from the central
system, the client-server model has a number of other advantages:

1. The possibility of much more sophisticated user interfaces.

2. The possibility of integrating database access with other,
non-database applications on the client - e.g. doing analysis of data
obtained from a database using a spreadsheet, or incorporating it
into a document using a word processor.

3. The ability to develop needed applications quickly, without having to
rely on the programming staff associated with the central database,
and using a variety of development environments, possibly from a
vendor other than the supplier of the database.

Use of Parallel Processing

The client-server model was motivated in part by a desire to shift some
of the processing load from the central server to the local client
systems, thus reducing the requirements placed on the central system.
Ironically, it may have had the opposite effect - the client-server
model expedites the development of more database applications, and may
actually increase the burden on an organization's server system(s)!

In order to keep up with the demand for database accesses, server systems
must often be able to handle a growing volume of database transactions -
growing because or organizational growth and/or an increased number of
applications using the database. One way to address this is with faster
and faster hardware, or course - but at any given point in time there
are technological limits as to how fast a single system can be. Two
components of the server, in particular, can become performance
bottlenecks:



1. The server's CPU.
2. The server's disk(s).

An alternative to acquiring ever faster hardware is to make use of
PARALLELISM - with a server containing two or more CPU's that share the
workload between them, possibly with multiple disks that can also be
accessed in parallel. This is discussed at some length in chapter 21
of the book - one we will not have time to cover. (But you can
certainly read it on your own if you wish!)

1. Parallelism may be used in server systems under the client-server
model.

2. Parallelism may also be used in the centralized model - the central
system becomes a cluster of CPU's made to look to the user as if they
were a single system.

One important observation about parallelism is to recognize that there
are a variety of reasons for using a parallel system. A given system's
success must be measured against the goals that led to its installation.

1. One possible goal is SPEEDUP - to make the processing of individual
transactions (of the same size) faster. This would, of course,
require the use of two or more CPU's to cooperate in the performing
of a single transaction.

2. Another possible goal is SCALEUP - to make it possible to handle a
greater volume of work in the same amount of time. This, in turn
has two sub-categories:

a. BATCH SCALEUP involves increasing the SIZE of individual
transactions, as would occur if the size of a database grew, so
that operations such as select and join require scanning more
tuples. This, again, entails having two or more CPU's cooperate
in the performing of a single transaction.

b. TRANSACTION SCALEUP involves either supporting larger transactions
(as might happen if the size of the database grows and searches
and joins become more cumbersome) or increasing the VOLUME of
transactions, as would occur if the number of users accessing the
database were to grow. This can be achieved by still having each
transaction handled by a single CPU, but by using multiple CPU's
to increase the number of transacactions that can be processed
during a given period of time.

3. For a variety of reasons (discussed in the text), efficiently dividing
the work of a single transaction among two or more CPU's is relatively
difficult. Thus, the easiest kind of performance improvement to
attain is transaction scaleup - which, fortunately, is the kind of
scaleup most often needed. However, there are also applications which
require batch scaleup - e.g. decision-support systems that require
analyzing large quantities of transactional data. Speedup is usually
less of an issue.



E.

G.

The book discusses various architectural issues and alternatives in
parallel database systems. In brief, such systems can be:

1. Shared memory - multiple CPU's sharing a common memory and disk
system, with each CPU having its own cache and or private local memory
as well. (Absent the latter, memory contention would severly limit
performance with even a few CPU's) Inter-CPU communication is very
fast in this model, since it is done be read/writing data in shared
memory.

2. Shared disk - each CPU has its own memory, but all CPU's share a
common disk system. Inter-CPU communication is done by message
passing over a network - a slower operation than shared memory; but
contention for access to shared memory is no longer a perormance-
limiting issue. Since the disk system containing the database is
shared, all CPU's have high-speed access to all parts of the database.
This kind of system is sometimes called a CLUSTER.

Example: Gordon's old administrative system eventually used a cluster
comprising three CPU's (WISDOM, MERCY, and GRACE) accessing
the common database. Individual users logged in to a particular
member of the cluster (based on the department they worked
for), but all had access to the database. The cluster as a
whole was made to appear to the outside world as a single
system known as HOPE. The basic model of computation was
still a centralized one.

3. Shared nothing - each CPU has its own memory and disk(s). The
database may be partitioned and/or replicated between the various
subsystems - so a given CPU may have fast access to parts of the
database, while needing to access other parts "owned" by another CPU
over the network that interconnects them.

4. A hierarchical combination of the above.

Because of interaction/interference between the CPU's accessing the
same database, there are practical limits as to how many CPU's can be
used before the gain created by increased computational power is
offset by the losses due to the systems "getting in each other's way".

We must also consider ways to parallelize access to the database itself
on disk. (If the entire database resides on a single disk, then disk
accesses are necessarily sequential, which severly limits parallelism
between transactions.)

1. Parallelizing of the disk accesses is inherent in the shared nothing
model.

2. It can also be achieved in the other two models by the use of RAID.



IV. Distributed Databases

A. If we take the idea of parallelism further, we move in the direction of
a DISTRIBUTED SYSTEM.

1. In the parallelism model we have discussed thus far, the overall
system still resembles a centralized system in the sense that the
database and the CPU's accessing it still reside at a single
physical site.

2. In a distributed system, the database is spread over a number of
physical sites, each of which houses a portion of the database.
(Often, this distribution mirrors the organizational structure of
the database's owner.)

B. Distributed systems are characterized by a much looser coupling between
systems, which facilitates increased gains through parallelism.

C. We discuss this as the next major topic.



