
CS352 Lecture: Database System Architectures last revised 11/26/08

I. Introduction
- ------------

 A. Most large databases require support for accesing the database by
 multiple users, often at multiple physical locations (sites). There
 are a variety of overall system architectures that can be used to
 accomplish this.

 B. Historically, early database systems were based on a CENTRALIZED MODEL,
 in which the database resides on a single computer system that allows
 access by remote terminals. This is still the model used by many
 systems today.

 1. Basic characteristics:

 a. All data resides on a single computer system.

 b. All computations using the data are performed by this system.

 c. Remote access is provided by "dumb terminals" or PC's running
 terminal emulation software.

 Example: Gordon's old administrative computer system used this
 model since it was first installed in 1979. The
 administrative database resided on a single computer system
 (originally a PDP-11/70, then a VAX-11/780, then a cluster
 of three Alphas). Campus offices accessed this database via
 DEC VTxxx terminals or PC's running terminal emulation
 software, or later via web-based applications accessing the
 database through a web server running on the same system.

 2. The chief advantage of this approach is simplicity - for installing
 and maintaing software, performing backups, and managing issues
 such as concurrency and recovery.

 3. However, the centralized model has a number of disadvantages:

 a. Typically centralized storage and manipulation of data goes
 hand-in-hand with centralized CONTROL of data - users have
 limited autonomy.

 b. "Dumb terminals" support only very unsophisticater user
 interfaces - basically just ASCII text and text based menus.

 c. A centralized system is totally vulnerable to failure of the
 centralized site. Thus, for example, a power failure at the
 site where the computer is located can shut down all access to
 the database, even at remote sites unaffected by the failure.

 d. As the volume of transactions handled by the system grows, it can
 become increasingly difficult for a single system to handle the
 demand.

 C. These problems - especially the latter - have motivated the development
 of alternative system architectures which move away from reliance on
 a single computer to perform all processing.

 1. The Client-Server Model

 2. Use of Parallel Processing

 3. Distributed Databases

II. The Client-Server Model
-- --- ------------- -----

 A. The centralized model originated prior to the development of the
 microprocessor, which made PC's possible. With the replacement of dumb
 terminals by powerful and inexpensive PC's, it becomes possible to shift
 some of the burden of computation from the computer system storing the
 database to the individual computers serving individual users. This led
 to the development of the client-server model, which we have discussed
 earlier in the course.

 B. A typical client-server application can be thought of as a system
 comprised of several layers.

 1. The structure discussed in the text: A "front end" that manages
 interaction with the user, and a "back end" that manages the database.

 2. A three layer architecture:

 a. The user interface layer (typically a GUI).

 b. The business layer (performs the actual processing specific to
 the application).

 c. The database layer.

 C. Actually, there are a couple of ways to structure the database layer
 that we didn't discuss when we discussed client-server architecture
 earlier in the course, because we had not yet discussed the overall
 structure of a DBMS.

 1. One model is called the TRANSACTION SERVER model - the database
 server executes database transactions on behalf of the client, but
 need not incorporate any awareness of what purpose the
 transactions are actually serving as far as the user's application
 is concerned.

 a. As noted in the text, when SQL is used as the medium of
 communication between the client and the server, it becomes very
 possible for the client and server software to be produced by two
 different vendors - and, indeed, for one server to service
 applications written using many different software packages, and,
 as well, for one client to access different servers running
 different DBMS's.

 b. This shifts the load of application-specific computation from the
 server to the client, while still leaving the server responsible
 for all query-processing related computation (query parsing,
 strategy selection, performing joins, etc.) In particular, no
 application-specific code need reside on the server (unless stored
 procedures are used, as might be done to support embedded SQL), and
 no database-specific code needs to reside on the client.

 Example: this is the model used by Gordon's new administrative
 software. All applications use a common database server running on
 a single system. Some are PC-based applications that access the
 database directly via ODBC; others access the database through one
 of several application servers supporting different adminstrative
 applications.

 2. It is also possible to use a DATA SERVER model, in which the server
 delivers physical database pages to the client, which then performs
 computation using them. This shifts some of the database layer load
 from the server to the client - but, of course, requires that the client
 software know more about the structure of the database, and incorporate
 some of the software typically considered part of the DBMS.

 D. In none of the client-server variants we have considered do we do away
 with a central system containing the database - we simply reduce the
 amount of computation for which it is responsible. Further, all disk
 accesses needed are performed on the server's disk(s) that hold the
 database.

 E. When the phrase "CLIENT-SERVER" is used without further qualification,
 it typically refers to to the Transaction Server model, with SQL
 providing the interface between the two layers, often through the use
 of ODBC or JDBC.

 F. In addition to removing some of the computational load from the central
 system, the client-server model has a number of other advantages:

 1. The possibility of much more sophisticated user interfaces.

 2. The possibility of integrating database access with other,
 non-database applications on the client - e.g. doing analysis of data
 obtained from a database using a spreadsheet, or incorporating it
 into a document using a word processor.

 3. The ability to develop needed applications quickly, without having to
 rely on the programming staff associated with the central database,
 and using a variety of development environments, possibly from a
 vendor other than the supplier of the database.

III. Use of Parallel Processing
--- --- -- -------- ----------

 A. The client-server model was motivated in part by a desire to shift some
 of the processing load from the central server to the local client
 systems, thus reducing the requirements placed on the central system.
 Ironically, it may have had the opposite effect - the client-server
 model expedites the development of more database applications, and may
 actually increase the burden on an organization's server system(s)!

 B. In order to keep up with the demand for database accesses, server systems
 must often be able to handle a growing volume of database transactions -
 growing because or organizational growth and/or an increased number of
 applications using the database. One way to address this is with faster
 and faster hardware, or course - but at any given point in time there
 are technological limits as to how fast a single system can be. Two
 components of the server, in particular, can become performance
 bottlenecks:

 1. The server's CPU.

 2. The server's disk(s).

 C. An alternative to acquiring ever faster hardware is to make use of
 PARALLELISM - with a server containing two or more CPU's that share the
 workload between them, possibly with multiple disks that can also be
 accessed in parallel. This is discussed at some length in chapter 21
 of the book - one we will not have time to cover. (But you can
 certainly read it on your own if you wish!)

 1. Parallelism may be used in server systems under the client-server
 model.

 2. Parallelism may also be used in the centralized model - the central
 system becomes a cluster of CPU's made to look to the user as if they
 were a single system.

 D. One important observation about parallelism is to recognize that there
 are a variety of reasons for using a parallel system. A given system's
 success must be measured against the goals that led to its installation.

 1. One possible goal is SPEEDUP - to make the processing of individual
 transactions (of the same size) faster. This would, of course,
 require the use of two or more CPU's to cooperate in the performing
 of a single transaction.

 2. Another possible goal is SCALEUP - to make it possible to handle a
 greater volume of work in the same amount of time. This, in turn
 has two sub-categories:

 a. BATCH SCALEUP involves increasing the SIZE of individual
 transactions, as would occur if the size of a database grew, so
 that operations such as select and join require scanning more
 tuples. This, again, entails having two or more CPU's cooperate
 in the performing of a single transaction.

 b. TRANSACTION SCALEUP involves either supporting larger transactions
 (as might happen if the size of the database grows and searches
 and joins become more cumbersome) or increasing the VOLUME of
 transactions, as would occur if the number of users accessing the
 database were to grow. This can be achieved by still having each
 transaction handled by a single CPU, but by using multiple CPU's
 to increase the number of transacactions that can be processed
 during a given period of time.

 3. For a variety of reasons (discussed in the text), efficiently dividing
 the work of a single transaction among two or more CPU's is relatively
 difficult. Thus, the easiest kind of performance improvement to
 attain is transaction scaleup - which, fortunately, is the kind of
 scaleup most often needed. However, there are also applications which
 require batch scaleup - e.g. decision-support systems that require
 analyzing large quantities of transactional data. Speedup is usually
 less of an issue.

 E. The book discusses various architectural issues and alternatives in
 parallel database systems. In brief, such systems can be:

 1. Shared memory - multiple CPU's sharing a common memory and disk
 system, with each CPU having its own cache and or private local memory
 as well. (Absent the latter, memory contention would severly limit
 performance with even a few CPU's) Inter-CPU communication is very
 fast in this model, since it is done be read/writing data in shared
 memory.

 2. Shared disk - each CPU has its own memory, but all CPU's share a
 common disk system. Inter-CPU communication is done by message
 passing over a network - a slower operation than shared memory; but
 contention for access to shared memory is no longer a perormance-
 limiting issue. Since the disk system containing the database is
 shared, all CPU's have high-speed access to all parts of the database.
 This kind of system is sometimes called a CLUSTER.

 Example: Gordon's old administrative system eventually used a cluster
 comprising three CPU's (WISDOM, MERCY, and GRACE) accessing
 the common database. Individual users logged in to a particular
 member of the cluster (based on the department they worked
 for), but all had access to the database. The cluster as a
 whole was made to appear to the outside world as a single
 system known as HOPE. The basic model of computation was
 still a centralized one.

 3. Shared nothing - each CPU has its own memory and disk(s). The
 database may be partitioned and/or replicated between the various
 subsystems - so a given CPU may have fast access to parts of the
 database, while needing to access other parts "owned" by another CPU
 over the network that interconnects them.

 4. A hierarchical combination of the above.

 F. Because of interaction/interference between the CPU's accessing the
 same database, there are practical limits as to how many CPU's can be
 used before the gain created by increased computational power is
 offset by the losses due to the systems "getting in each other's way".

 G. We must also consider ways to parallelize access to the database itself
 on disk. (If the entire database resides on a single disk, then disk
 accesses are necessarily sequential, which severly limits parallelism
 between transactions.)

 1. Parallelizing of the disk accesses is inherent in the shared nothing
 model.

 2. It can also be achieved in the other two models by the use of RAID.

IV. Distributed Databases
-- ----------- ---------

 A. If we take the idea of parallelism further, we move in the direction of
 a DISTRIBUTED SYSTEM.

 1. In the parallelism model we have discussed thus far, the overall
 system still resembles a centralized system in the sense that the
 database and the CPU's accessing it still reside at a single
 physical site.

 2. In a distributed system, the database is spread over a number of
 physical sites, each of which houses a portion of the database.
 (Often, this distribution mirrors the organizational structure of
 the database's owner.)

 B. Distributed systems are characterized by a much looser coupling between
 systems, which facilitates increased gains through parallelism.

 C. We discuss this as the next major topic.

