PROOF EXAMPLES

MAT229 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Here are some examples of techniques used to prove implications in the form $p \to q$ are true. Recall that p is the hypothesis and q is the conclusion.

1. Trivial Proof

A trivial proof is one in which the conclusion is already known to be true. For example:

Theorem 1. If $n \ge 0$ then $n^2 \ge 0$.

Proof. Since n^2 is always a nonnegative integer when n is an integer, there is nothing to prove; the conclusion is already true.

2. Direct Proof

Theorem 2. If n is an integer greater than 1, then $n^2 > n$.

Proof.

$$1 < n$$

$$= n \cdot 1$$

$$< n \cdot n$$

$$= n^{2}$$

Therefore $n < n^2$.

Theorem 3. If n is an odd integer, then 3n is an odd integer.

Proof.

$$n = 2q + 1$$
 for some integer q
 $3n = 6q + 3$
 $= 2(3q) + 3$
 $= 2(3q + 1) + 1$

Since we've expressed 3n in the form 2k + 1 where k is an integer we know that 3n is an odd integer.

Date: September 2008.

3. Indirect Proof

Theorem 4. If 3n + 10 > 50 then n > 13.

Proof. Assume $n \leq 13$. Then $3n \leq 39$ and so $3n+10 \leq 49$, which is the negation of the hypothesis (recall that $\neg q \rightarrow \neg p$ is logically equivalent to $p \rightarrow q$).

Theorem 5. If n^2 is even then n is even.

Proof. Assume that n is odd. We will show that n^2 must also be odd. If n is odd then there is an integer k such that n=2k+1. In this case

$$n^{2} = (2k + 1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1$$

Since n^2 is written as an even number plus one, it must be an odd number.

We have just directly proved that "if n is odd then n^2 is odd" and thereby indirectly proved our theorem "if n^2 is even then n is even."

4. Proof by Contradiction

Theorem 6. $\sqrt{2}$ is an irrational number.

Proof. Assume that $\sqrt{2}$ rational, in which case it can be expressed as the ratio of two integers with no factors in common:

$$\sqrt{2} = \frac{a}{b}$$

where a and b are both integers with no factors in common and with $b \neq 0$. Clearing the fraction by multiplying both sides by b and squaring gives

$$2b^2 = a^2$$

From this we see that a^2 must be an even number since it is a multiple of 2 and from one of the above examples we know that if a^2 is even then a is even. Thus we can write a = 2c for some integer c. Our last equation then becomes

$$2b^2 = (2c)^2$$
$$= 4c^2$$
$$b^2 = 2c^2$$

Notice that the last line asserts that b^2 is an even number since it is a multiple of 2, and if b^2 is even then we know that b is even.

We now have a contradiction. We began by assuming that $\sqrt{2} = a/b$ where a and b had no common factors but we've just found that both a and b are even numbers, meaning they both have 2 as a factor. Since this is impossible, it must be that our assumption that $\sqrt{2}$ is rational is false.

Theorem 7. Let $g: A \to B$ and $f: B \to C$. If f and $f \circ g$ are both one-to-one functions then g is also a one-to-one function.

Proof. Assume that g is not one-to-one. Then $\exists x_1, x_2 \in A$ such that $g(x_1) = g(x_2) = y$ for some $y \in B$. If f(y) = z for some $z \in C$ then $(f \circ g)(x_1) = (f \circ g)(x_2) = z$, contradicting the fact that $f \circ g$ is one-to-one. Therefore it must not be possible that g is not one-to-one, and so g is indeed a one-to-one function.

5. Proof by Cases

Theorem 8. $|x| + |y| \ge |x + y|$

Proof. case 1: $x \ge 0$, $y \ge 0$. In this case |x + y| = x + y = |x| + |y|.

case 2: $x \le 0, y \le 0$. Now |x+y| = -(x+y) = -x + (-y) = |x| + |y|.

case 3: $x \ge 0, y \le 0$.

$$|x + y| = ||x| - |y||$$

$$\leq ||x| + 2|y| - |y||$$

$$= ||x| + |y||$$

$$= |x| + |y|$$

case 4: $x \le 0$, $y \ge 0$. Here we merely need to reverse the roles of x and y in case 3.

Since all possible cases have been handled, and in each case we see that $|x| + |y| \ge |x + y|$, we have prove the theorem.