proved.

Fallacies

Common forms of incorrect reasoning.

12345678

Rules of Inference		
Rule of Inference	Tautology	Name
p therefore $(p \lor q)$	$p \Rightarrow (p \lor q)$	Addition
$(p \land q)$ therefore p	$(p \land q) \Rightarrow p$	Simplification
p and $p \Rightarrow q$ therefore q	$[p \land (p \Rightarrow q)] \Rightarrow q$	Modus ponens
$\neg q$ and $p \Rightarrow q$ therefore $\neg p$	$[\neg q \land (p \Rightarrow q)] \Rightarrow \neg p$	Modus tollens
$p \Rightarrow q \text{ and } q \Rightarrow r \text{ therefore}$ $p \Rightarrow r$		Hypothetical syllogism
$p \lor q$ and $\neg p$ therefore q	$[(p \lor q) \land \neg p] \Rightarrow q$	Disjunctive syllogism

12345678

08/28/2003 03:51 PM 08/28/2003 03:51 PM 1 of 1 1 of 1

Methods of Proof

prev | slides | next

Methods of Proof

prev | slides | next

Examples of rules of inference

Addition: It is sunny. Therefore it is either sunny or it is

raining.

Simplification: It is sunny and it is hot. Therefore it is sunny.

Modus ponens: It is sunny. If it is sunny then it is hot. Therefore

it is hot.

Modus tollens: It is not hot. If it is sunny then it is hot. Therefore

it is not sunny.

Hypothetical If it is sunny then it is hot. If it is hot then we sweat. Therefore if it is sunny then we sweat.

Disjunctive It is sunny or it is raining. It is not sunny.

Syllogism: Therefore it is raining.

12345678

Fallacies

Affirming the If it is sunny then it is hot. It is hot. Therefore it

conclusion: is sunny.

Denying the If it is sunny then it is hot. It is not sunny.

hypothesis: Therefore it is not hot.

Circular reasoning: (Use of statement to be proved in the proof

itself.)

12345678

1 of 1 08/28/2003 03:51 PM 1 of 1 08/28/2003 03:51 PM

Methods of Proof http://localhost/~senning/courses/ma229/slides/proofs/slide07.html Methods of Proof http://localhost/~senning/courses/ma229/slides/proofs/slide08.html

Methods of Proof

prev | slides | next

Methods of Proof

prev | slides | next

08/28/2003 03:51 PM

Types of Proof

Vacuous proof

 $p \Rightarrow q$ when p is false.

Trivial proof

 $p \Rightarrow q$ when q is true.

Direct proof

 $p \Rightarrow q$: asserting that p is true requires q to be true.

Indirect proof

 $p \Rightarrow q$: asserting $\neg q$ is true requires that $\neg p$ is true.

12345678

Types of Proof

Proof by contradiction

 $p \rightarrow q$: assume that $p \rightarrow \neg q$ is true and show that a contradiction arises.

Proof by cases

 $(p_1 \lor p_2 \lor ... \lor p_n) \Rightarrow q$: show that each $p_i \Rightarrow q$

12345678