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Introduction

Why voting?

Imagine the following hypothetical outcome in a popularity contest:

Kathryn Nyman Erin McNicholas Josh Laison

28 % 37 % 35%

It’s pretty clear who wins here, right? Or is it? With the same voters and
their likes/dislikes, say we also have the following two-way poll results.

Laison-Nyman Laison-McN Nyman-McN

55%-45% 63%-37% 63%-37%

The winner is way behind now – what happened? Could someone win even
if s/he would lose dramatically to the others head-to-head?
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55%-45% 63%-37% 63%-37%

The winner is way behind now – what happened? Could someone win even
if s/he would lose dramatically to the others head-to-head?

(Change a few names to get the Minnesota election for governor in 1998,
where radio host, wrestler, and small-town mayor Jesse Ventura won.)
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The winner is way behind now – what happened? Could someone win even
if s/he would lose dramatically to the others head-to-head?

(You can think of lots of other paradoxes, such as the 2000 US presidential
election; that example is closely related to Simpson’s paradox.)
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Introduction

Why graphs?
This can immediately be connected to graphs.

Recall that a graph is just a set of ‘nodes’ (or ‘vertices’) and ‘edges’,
where some nodes are connected by edges. Compare:

Laison-Nyman Laison-McN Laison-McN

55%-45% 63%-37% 63%-37%

Lai

McN

Nym

A more general version of this is a ‘tournament graph’, which can be
analyzed for various paradoxes or results.
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Introduction

Elections and graphs?
Graphs are useful in many kinds of data analysis, even in the current
election, if you know where to look. Think of social media:

C1

C2

C3

C4

C5C6 T1

T2

T3

T4

T5

O1 O2

A careful advertiser can exploit that, often, Trump supporters know few
Clinton supporters personally, and vice versa.
Bayesian statistical analysis of the polls using graphs may even help Nate
Silver predict its outcome ... but I digress!
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Introduction

Why really voting and graphs?

To answer this question, we’ll soon see the method for selecting the Holy
Roman Emperor proposed by one of the earliest ‘voting theorists’, Nicolas
of Cusa. I want to draw attention to two attributes of his system.

I First, relationships among candidates are important:

In the name of God [the elector should ponder] . . . who
among all candidates is least qualified. . . who is next least
suitable, and . . . continues until he arrives at the best.

I Although he is writing far too early to articulate it mathematically, he
also cares about the fairness of the method:

It would not be possible to devise a more righteous, just
[method in which] . . . the winner is the one who is judged
best by the collective verdict of all.
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Introduction

Why voting and graphs?

My own feeling is that people have a deep desire in voting systems for:

I Clear relationships among candidates, in both input and output

I Well-defined symmetry as a proxy for fairness or equity

This talk explores choosing graphs as our modeling tool.

I The choices we care (most) about can be modeled with vertices.

I Relationships (the ones we care about) can be modeled by edges.

I Fairness can be modeled by considering the symmetries of the graphs.

This talk will introduce a few examples of this productive approach. But
don’t worry if you don’t get every detail – just try for the flavor of graphs
in analyzing voting!
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Rankings and the Permutahedron

Social Preference Functions

We’ll start by putting Cusa’s choice procedure into context. Although he
was concerned with selecting just one winner, note that he asked the
voters to rank all the candidates.

In social choice, there are many frameworks.

I What sort of preference inputs are allowed? (E.g. orders, yes/no, . . . )

I What sort of output is desired? (E.g one winner, full order,
yes/no,. . . )

If we ask for both input and output to be a full ranking, we call a
procedure a social preference functions. Potential scenarios include:

I Electing a full slate of officers, with succession, for an organization.

I Setting up a rotating schedule for site visits for inspection.
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Rankings and the Permutahedron

Borda and Kemeny

We briefly describe two such systems.

I The Borda Count (BC):
I With the standard point spectrum of 0 for last up to n − 1 for first, we

order candidates in rank of total points, perhaps with ties.
I As a social preference function, the outcome is all strict orders

compatible with the standard weak order given by the point ranking.
I (This was Cusa’s system! Think college football polls.)

I The Kemeny Rule (KR):
I Look at ‘pairwise’ votes, like A versus B.
I For each possible outcome, check for how many pairwise votes it

disagrees with each voter.
I The ranking(s) with the least cumulative disagreement is (are) chosen.
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Rankings and the Permutahedron

Borda and Kemeny

5

(ACB)

(ABC) (BAC)

(BCA)

(CBA)(CAB)

A B

C

36

0 5

0

This picture is called the
‘representation triangle’.

I The Borda count gives the
outcome B � A � C , with point
totals 22 � 20 � 15.

I We’ll just highlight a few Kemeny
computations:

I Note that A � C � B differs in
only one pairwise vote from 11
voters, but in all three with 5
voters, totaling 32 points.

I But A � B � C agrees
completely with six voters and
disagrees completely with none,
in the end totaling 23 points –
and this is the eventual winner.
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Rankings and the Permutahedron

Towards Graphs

5(ACB)

(CAB) (CBA)

(BCA)

(BAC)(ABC)

05

6 3

0

(XZY)

w

t

u

u

v

v

(XYZ) (YXZ)

(YZX)

(ZYX)(ZXY)

Where are the graphs? This new picture
alludes to them.

Next, let’s define a new type of procedure
with some ‘weights’. For each ranking, we do
a dot product of the appropriate rotation of
the weight hexagon with the first one.
Whichever ranking has the most points, wins.
For instance:

A � B � C receives
t · 6 + u · 0 + u · 3 + v · 5 + v · 5 + w · 0
A � C � B receives
t · 0 + u · 6 + u · 5 + v · 3 + v · 0 + w · 5
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Rankings and the Permutahedron

Neutral Simple Ranking Scoring Functions

5(ACB)

(CAB) (CBA)

(BCA)

(BAC)(ABC)

05

6 3

0

I will call these Neutral Simple Ranking
Scoring Functions (due to Conitzer, Xia, and
Zwicker).

Regular plurality votes (like for president),
but also Borda and Kemeny, are examples
and can be computed directly this way.

For instance, this set of weights gives the
Borda Count, although it’s not obvious. As
an example, B � A � C receives
4 · 6 + 3 · 0 + 3 · 3 + 1 · 5 + 1 · 5 + 0 · 0 = 43
points; you may wish to take a moment to
verify this is the highest possible score.

It’s not hard at all to verify that this set of
weights gives the Kemeny Rule.
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Borda Count, although it’s not obvious. As
an example, B � A � C receives
4 · 6 + 3 · 0 + 3 · 3 + 1 · 5 + 1 · 5 + 0 · 0 = 43
points; you may wish to take a moment to
verify this is the highest possible score.

It’s not hard at all to verify that this set of
weights gives the Kemeny Rule.
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Rankings and the Permutahedron

Here’s the Graph!
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v
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(YZX)

(ZYX)(ZXY)

(YXZ)

(12)()

(23)

(12)(23)

(23)(12)

(12)(23)(12)=
(23)(12)(23)

(XYZ)

(XZY)

(ZXY) (ZYX)

(YZX)

Notice that I have restricted to weights with
a certain symmetry.

It’s precisely the symmetry given by traversing
the permutations you need to apply to
X � Y � Z to get the other rankings.

Indeed, the regular hexagon is the
3-permutahedron – the Cayley graph of the
symmetric group with generators (i i + 1).

(You can also think of it as requiring that
reversing all preferences would lead to a
reversal in the outcome.)
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Rankings and the Permutahedron

Graphs and Symmetry

We can now use this to discover meaningful voting procedures, by looking
at the set of all symmetries (the ‘automorphism group’) of the graph!

I The set of all possible voter preferences can be regarded as a vector
space M = Qn!.

I We decompose this vector space in a ‘nice’ linear algebra way that
keeps the symmetries in mind.

I Then we look at which procedures obey this symmetry, since the
‘weights’ are also vectors in M.

I Finally, we add voting: we only allow procedures which are
‘compatible with head-to-head matchups’ in a specific, linear way.

I Borda and Kemeny manage to stick around ...
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Rankings and the Permutahedron

Graphs and Symmetry

(1 2 4 3)

( )
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(1 3)

(1 4 3 2)
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(1 4)(2 3)

(1 4 2 3)

(1 4 3)

(1 3)(2 4)

(1 4)

(1 3 4)

The punch line is that, for any n, we can bring
the voting in.

I Create the permutahedron graph, find its
symmetries (Sn × Z/2Z), and only look at
stuff obeying the symmetry.

I Only allow procedures that take
head-to-head (pairwise) information into
account, if you want.

I Theorem: If you then only allow
procedures that don’t ignore this nice
information you just gave it, you now get a
procedure ‘between’ the Borda Count and
Kemeny Rule, in a linear algebra sense.
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Voting for Committees

Thinking about Committees

Graphs and voting can elucidate a very wide spectrum of topics. Let’s
switch gears to a very common (and onerous) task maybe you haven’t had
to do yet – choosing committees.

We have to start somewhere, so let’s make the following assumptions:

I There are n candidates, but the committee will be of size k < n.

I Each voter gets to select j ≤ k of the candidates.

I Each such ‘vote’ counts as ‘approval’ or a vote for any committee of
size k containing all j candidates in the ‘vote’.

Ex: Each voter picks j = 2 candidates, aiming at a k = 3-person
committee out of n = 5.

The Johnson graph is the graph which proves useful for this model.
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Voting for Committees

The Johnson Graph

{0, 1}

{0, 3}

{1, 3}

{0, 2}

{2, 3}

{1, 2}

{0, 1}

{0, 3}

{1, 3}

{0, 2}

{2, 3}

{3, 4}

{1, 4}

{0, 4}

{1, 2}

{2, 4}

The Johnson graph J(n, j) has:

I Vertices which are cardinality-j subsets of {1, 2, . . . , n}
I Two vertices joined if the subsets differ in only one element

I Evident connection to votes for a committee in our model

Note that the graph distance between two vertices v and w is simply the
number of candidates differing between the two ‘votes’.
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Voting for Committees

Voting on the Johnson Graph

Fact (Davis, Orrison, Su):

For any set of votes, there is a committee at least
(kj)
(nj)

voters approve of.

In the examples above, if j = k = 2, then for n = 4 or 5, unsurprisingly,
these are 1/6 and 1/10. More interesting is that for k = 3 and n = 5 we
get a guarantee that 30% of the voters will approve of some committee.

That still doesn’t seem very good. Can we impose conditions on the
preferences of the electorate to guarantee a more ‘agreeable’ (!) outcome?

In order to do so, we introduce a notion of a ‘ball’ around a given vote.
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Voting for Committees

Voting on the Johnson Graph
It’s easier to see than describe; here is the ball of radius one around {0, 1}.

{0, 1}

{0, 3}

{1, 3}

{0, 2}

{2, 3}

{3, 4}

{1, 4}

{0, 4}

{1, 2}

{2, 4}

Restricting votes to only be in the red vertices (again, selecting
committees of size k = 3), this improves the guarantee to 1/3. In general:
Theorem (ibid.):

If ρ ≤ j
[
1− j

k+1

]
, then if all votes are in a ball of radius ρ, there is a

committee approved of by at least
(k−j

ρ )
(n−j

ρ )
of the voters.

For instance, if we use the same setup, but with n = 10, the first bound
gives us 1

15 while the second gives us 1
8 , which is almost twice as good.
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Even More Graphs – and Conclusion

More Voting Questions
Could we attack other questions where we do not have output a single
candidate or choice function? Think again of the example of site visits for
inspection.

Over the long term, perhaps the cyclic order is most important. The
so-called cyclic order graph catalogues these. Here is CO(4).
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Even More Graphs – and Conclusion

Cyclic Order Graphs

It turns out there is very little known about these graphs, though they do
have some nice properties.

One could consider their construction by doing CO(5) on the chalkboard.

Let’s agree not to construct CO(6) by hand.
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Even More Graphs – and Conclusion

Symmetry of Cyclic Orders
What voting information can we get from these?

I We assume, just like in the committee and ranking case, that certain
minimal changes give an edge. Here, it is one swap in the cycle.

I We consider a set of preferences.
I We get the symmetries of the graph, and decompose (in a linear

algebra sense) preferences with respect to that symmetry.
I We hope this yields voting insight.

In CO(4), here are the interesting decompositions, which have definite
voting flavor.
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Even More Graphs – and Conclusion

More Graphs

But wait, there’s more!

Think of these as voting on how to sit around a table. With your friends,
maybe 123451 is really the same as 154321 (you could think of this as a
dihedral symmetry). We could modify our graphs to indicate this.

For n > 5, it turns out this has half as much symmetry; can we get
meaningful information about voting on how to sit at the table from it?
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Even More Graphs – and Conclusion

Takeaways and Thanks

What should you remember a week from now about this talk?

I Voting theory can use most interesting mathematics!

I Graphs are ideal for this because they allow both relationships and
symmetry to be encoded.

I Linear algebra and combinatorics help get information from graphs in
voting.

What else do I want you to know about this talk?

I Everyone should consider using open-source SageMath (and GAP and
matplotlib and . . . ) to do experimental math and make cool graphics.

I I’m very thankful to Drs. McNicholas and Nyman for inviting me to
speak on something I find fascinating.

I I’m especially thankful to you for coming!

Questions?
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